Title: Innovative Effects on GFRP Inserted Epoxy Adhesives with the Different Thicknesses for Bonding Wind Turbine Blades of Two Parts
Authors: Joung-Man Park, Jong-Hyun Kim, Dong-Jun Kwon, K. L. DeVries
DOI: 10.33599/nasampe/c.22.0023
Abstract: The adhesion of hybrid composite materials is essential in the manufacture of wind turbine blades. Epoxy adhesives have been used for adhesion as well as a addition of the gaps between hybrid composites. In this research, the adhesive properties were investigated with different adhesive thicknesses for glass fiber and carbon fiber reinforced hybrid composites (GFRP, CFRP). As the adhesive thickness increased, the lap shear strength (LSS) decreased with rather exponential function. There were problems that as the thickness of the adhesive increases, voids were easily formed inside epoxy adhesive. The thick adhesive layer has also a low resistance to bending, and debonding by loading occurred at the adhesive layer quickly. Even when the thick bonding section was formed with incerted GFRP, the GFRP was deformed further in the bonding part upon the applied external stress. It could be because the interfacial stress by incerted GFRP was higher than neat epoxy adhesive. It was monitored by 3D ER mapping of CFRP substrate, and the shear stress transfer could be evaluated from the bonding part to CFRP substrate. The incerted GFRP to the epoxy adhesive can be improved the adhesion as well as the crack resistance against shear failure for thick adhesive parts, such as wind turbine blades.
References: 1. C. Ai, H. Huang, A. Rahman, S. An, Construction and Building Materials, 264, 120269 (2020). 2. W. Hou, Z. Zu, Z. Han, H. Wang, L. Tong, Thin-Walled Structures, 143, 106232 (2019). 3. A. Muhammad, M. R. Rahman, R. Baini, M. K. B. Bakri in “Advances in Sustainable Polymer Composites”. (Md. Rezaur Rahman Ed.), pp. 185-207, Woodhead Publishing, Sawston, 2021. 4. V. Raman, M. D. Habti, Composites Part B: Engineering, 176, 107094 (2019). 5. A. Sasikumar, J. M. Guerrero, A. Q. Corominas, J. Costa, Composite Structures, 275, 114396 (2021). 6. M. Droździel, P. Podolak, D. Nardi, P. Jakubczak, Composite Structures, 269, 114027 (2021). 7. G. Idarraga, M. Jalalvand, M. Fotouhi, J. Meza, M. R. Wisnom, Composite Structures, 271, 114128 (2021). 8. C. Zhang, Y. Rao, W. Li, Composite Structures, 234, 111713 (2020). 9. A. Sohouli, M. Yildiz, A. Suleman, Composite Structures, 203, 681 (2018). 10. Y. M. Ji, K. S. Han, Renewable Energy, 65, 23 (2014). 11. S. Rehman, M. D. Alam, L. M. Alhems, M. M. Rafique, Energies, 11, 506 (2018). 12. N. Buckney, A. Pirrera, S. D. Green, P. M. Weaver, Thin-Walled Structures, 67, 144 (2013). 13. H. Shin, Reuters, Energy & Environment, 2021. 14. P. Lux, A. G. Cassano, S. B. Johnson, M. Maiaru, S. E. Stapleton, Renewable Energy, 162, 397 (2020). 15. D. Samborsky, J. Mandell, A. Sears, O. Kils, 47th AIAA, Orlando, FA, 2009. 16. D. J. Kwon, J. H. Kim, Y. J. Kim, J. J. Kim, S. M. Park, I. J. Kwon, P. S. Shin, K. L. DeVries, J. M. Park, Composites Part B Engineering, 170, 11 (2019). 17. T. Ikeda, D. Ikemoto, D. Lee, N. Miyazaki in “Computational Mechanics–New Frontiers for the New Millennium”. (S. Valliappan, N. Khalili Eds.), pp. 631-636, Elsevier Science, Amsterdam, 2001. 18. F. Sayer, A. Antoniou, A. V. Wingerde, International Journal of Adhesion and Adhesives, 37, 129 (2012). 19. Y. M. Ji, K. S. Han, Renewable Energy, 65, 23 (2014). 20. Z. A. Azzawi, T. Stratford, M. Rotter, L. Bisby, Composite Structures, 210, 82 (2019). 21. X. Zhang, Y. Chen, M. Ye, Composite Structures, 275, 114407 (2021). 22. T. A. Bogetti, J. W. Gillespie, Two-dimensional cure simulation of thick thermosetting composites. Journal of composite materials, 25, 239 (1991). 23. M. Schipper, ISAEE/IAEE North Amirican Conference, Washington D.C., 2018. 24. R. E. S. Irena, Renewable Energy Targent Setting, Abu Dhabi, 2019. 25. M. Y. Hwang, H. L. Jang, S. Kim, J. W. Lim, L. H. Kang, Renewable Energy, 163, 1 (2021). 26. R. E. Murray, J. Roadman, R. Beach, Renewable Energy, 140, 501 (2019). 27. R. E. Murray, R. Beach, D. Barnes, D. Snowberg, D. Berry, S. Rooney, M. Jenks, B. Gage, S. Wallen, S. Hughes, Renewable Energy, 164, 1100 (2021). 28. R. Rafiee, M. R. H. Taheri, Engineering Failure Analysis, 121, 105148 (2021). 29. X. Chen, S. Semenov, M. McGugan, S. H. Madsen, S. C. Yeniceli, P. Berring, K. Branner, Composites Part A: Applied Science and Manufacturing, 140, 106189 (2021). 30. J. Chen, X. Shen, X. Zhu, Z. Du, Composite Structures, 213, 173 (2019). 31. G. Wu, Z. Qin, L. Zhang, K. Yang, Engineering Failure Analysis, 85, 36 (2018). 32. R. A. H. Alarcona, J. Leyrer, E. Leal, A. Vizan, J. Perez, L. F. M. D. Silva, International Journal of Adhesion and Adhesives, 83, 178 (2018). 33. L. Mishnaevsky, Renewable Energy, 140, 828 (2019). 34. D. J. Kwon, I. J. Kwon, J. Kong, S. Y. Nam, Polymer Testing, 93, 106995 (2021). 35. P. S. Shin, D. J. Kwon, J. H. Kim, S. I. Lee, K. L. DeVries, J. M. Park, Composites Science and Technology, 142, 98 (2017). 36. C. H. Simmons, D. E. Maguire, N. Phelps in “Manual of Engineering Drawing”, 5th ed. (C. Simmons, D. Maguire Eds.), pp. 547-560, Butterworth-Heinemann, Oxford, 2020. 37. I. G. García, D. Leguillon, International Journal of Solids and Structures, 49, 2138 (2012). 38. V. C. Beber, B. Schneider, International Journal of Fatigue, 140, 15824 (2020). 39. J. H. Kim, D. J. Kwon, P. S. Shin, Y. M. Baek, H. S. Park, K. L. DeVries, J. M. Park, Composites Part B: Engineering, 155, 178 (2018). 40. F. Lahuerta, N. Koorn, D. Smissaert, Composite Structures, 204, 755 (2018).
Conference: CAMX 2022
Publication Date: 2022/10/17
SKU: TP22-0000000023
Pages: 18
Price: $36.00
Get This Paper