Title: High-Performance Properties of a Resin Transfer Molding (RTM) Imide Oligomer Polymer Matrix
Authors: William C. Guzman, Levi Hamernik, and Jeffrey S. Wiggins
DOI: 10.33599/nasampe/c.22.0073
Abstract: Polyimides have long been at the pinnacle of high-performance polymers due to their high glass transition temperatures (Tg), high char-yields, solvent resistance, and mechanical properties. More specifically, imide oligomer matrices such as phenylethynyl-terminated imide oligomers (PETI) matrices have taken the forefront of polymer matrix chemistry for high-temperature carbon fiber reinforced (CFR) composites. Despite significant advances in PETI matrices, there are still significant challenges to the processing of these types of materials. The necessity of using harsh solvents such as N-methyl-2-pyrrolidinone (NMP) for solubility, or extra imidization processing steps required for high-temperature composite manufacturing can make complex geometry parts challenging to produce. One key advantage to imide oligomer matrices is their modularity leading to copious molecular design variations, wherein, imide oligomer matrices can be adapted to change processability and thermomechanical properties. Herein, we demonstrated that through the use of a unique aryl-ether-ketone (AEK) structure, a crystalline imide oligomer matrix can exhibit outstanding processability with viscosities < 10 Pa·S at 250-330 °C. The AEK imide oligomers not only meet the requirements for high-temperature resin transfer molding (RTM), but also maintained good thermomechanical properties, and high char yields. These aforementioned high-temperature materials can be applied in areas of high national importance, such as hypersonics and attritable aircraft.
References: [1] Z. Huda and P. Edi, “Materials selection in design of structures and engines of supersonic aircrafts: A review,” Mater. Des., vol. 46, pp. 552–560, Apr. 2013, doi: 10.1016/j.matdes.2012.10.001. [2] P. M. Hergenrother, “The Use, Design, Synthesis, and Properties of High Performance/High Temperature Polymers: An Overview,” High Perform. Polym., vol. 15, no. 1, pp. 3–45, Mar. 2003, doi: 10.1177/095400830301500101. [3] P. M. Hergenrother, “Recent Advances in High Temperature Polymers,” Polym. J., vol. 19, no. 1, pp. 73–83, Jan. 1987, doi: 10.1295/polymj.19.73. [4] R. G. Bryant, “Polyimides,” in Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Inc., Ed. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006, p. pst272.pub2. doi: 10.1002/0471440264.pst272.pub2. [5] R. J. Cano and B. J. Jensen, “Effect of Molecular Weight on Processing and Adhesive Properties of the Phenylethynyl-Terminated Polyimide LARCTM-PETI-5,” J. Adhes., vol. 60, no. 1–4, pp. 113–123, Jan. 1997, doi: 10.1080/00218469708014413. [6] J. W. Connell and J. G. Smith, “Neat Resin, Adhesive and Composite Properties of Reactive Additive/PETI-5 Blends,” p. 11. [7] K. Chuang, T. W. Hughes, R. Avakian, and L. Hu, “Reactive Extrusion of High Temperature Resins for Additive Manufacturing,” p. 17. [8] K. C. Chuang, T. Gornet, and H. Koerner, “Challenges in Laser Sintering of Melt-Processable Thermoset Imide Resin,” p. 12. [9] P. M. Hergenrother and J. G. Smith, “Chemistry and properties of imide oligomers end-capped with phenylethynylphthalic anhydrides,” Polymer, vol. 35, no. 22, pp. 4857–4864, Oct. 1994, doi: 10.1016/0032-3861(94)90744-7. [10] C. J. Lee, “POLYIMIDES, POLYQUINOLINES AND POLYQUINOXALINES: T g -STRUCTURE RELATIONSHIPS,” J. Macromol. Sci. Part C Polym. Rev., vol. 29, no. 4, pp. 431–560, Nov. 1989, doi: 10.1080/07366578908050889. [11] D.-J. Liaw, K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, and C.-S. Ha, “Advanced polyimide materials: Syntheses, physical properties and applications,” Prog. Polym. Sci., vol. 37, no. 7, pp. 907–974, Jul. 2012, doi: 10.1016/j.progpolymsci.2012.02.005. [12] Y. Zhang, A. Jain, L. K. Grunenfelder, M. Miyauchi, and S. Nutt, “Process development for phenylethynyl-terminated PMDA-type asymmetric polyimide composites,” High Perform. Polym., vol. 30, no. 6, pp. 731–741, Aug. 2018, doi: 10.1177/0954008317720802. [13] Y. Zhang, M. Miyauchi, and S. Nutt, “Structure and properties of a phenylethynyl-terminated PMDA-type asymmetric polyimide,” High Perform. Polym., vol. 31, no. 3, pp. 261–272, Apr. 2019, doi: 10.1177/0954008318762592. [14] J. W. Connell, J. G. Smith, and P. M. Hergenrother, “High Temperature Transfer Molding Resins: Status of PETI-298 and PETI-330,” p. 15. [15] J. W. Connell, J. G. Smith, and P. M. Hergenrother, “Oligomers and Polymers Containing Phenylethynyl Groups,” J. Macromol. Sci. Part C Polym. Rev., vol. 40, no. 2–3, pp. 207–230, Jul. 2000, doi: 10.1081/MC-100100585. [16] P. M. Hergenrother, J. W. Connell, and J. G. Smith, “Phenylethynyl containing imide oligomers,” Polymer, vol. 41, no. 13, pp. 5073–5081, Jun. 2000, doi: 10.1016/S0032-3861(99)00569-8. [17] J. G. Smith, J. W. Connell, P. M. Hergenrother, and J. M. Criss, “Resin Transfer Moldable Phenylethynyl Containing Imide Oligomers,” J. Compos. Mater., vol. 36, no. 19, pp. 2255–2265, Oct. 2002, doi: 10.1177/0021998302036019293. [18] R. Yokota et al., “Molecular Design of Heat Resistant Polyimides Having Excellent Processability and High Glass Transition Temperature,” High Perform. Polym., vol. 13, no. 2, pp. S61–S72, Jun. 2001, doi: 10.1088/0954-0083/13/2/306. [19] K. C. Chuang, J. M. Criss, E. A. Mintz, and P. Technologies, “POLYIMIDES BASED ON ASYMMETRIC DIANHYDRIDES (II) (a-BPDA VS a-BTDA) FOR RESIN TRANSFER MOLDING,” p. 12. [20] M. Miyauchi, Y. Ishida, T. Ogasawara, and R. Yokota, “Novel phenylethynyl-terminated PMDA-type polyimides based on KAPTON backbone structures derived from 2-phenyl-4,4′-diaminodiphenyl ether,” Polym. J., vol. 44, no. 9, pp. 959–965, Sep. 2012, doi: 10.1038/pj.2012.19. [21] T. Ogasawara et al., “Processing and properties of carbon fiber reinforced triple-A polyimide (Tri-A PI) matrix composites,” Adv. Compos. Mater., vol. 11, no. 3, pp. 277–286, Jan. 2002, doi: 10.1163/156855102762506317. [22] X. Meng, Y. Zheng, J. Yan, Y. Li, Z. Wang, and G. Li, “2,3,3′,4′-Oxydiphthalic dianhydride-based phenylethynyl-terminated imide oligomers for low-temperature resin transfer molding applications,” High Perform. Polym., vol. 28, no. 8, pp. 962–970, Oct. 2016, doi: 10.1177/0954008315611470. [23] H. Li et al., “Highly soluble phenylethynyl-terminated imides derived from mellophanic dianhydride (MPDA),” Polym. Adv. Technol., vol. 29, no. 11, pp. 2797–2805, Nov. 2018, doi: 10.1002/pat.4402. [24] Y. Li, L. A. Murphy, J. E. Lincoln, and R. J. Morgan, “Phenylethynyl End-Capped Fluorinated Imide Oligomer AFR-PEPA-N: Morphology and Processibility Characteristics,” Macromol. Mater. Eng., vol. 292, no. 1, pp. 78–84, Jan. 2007, doi: 10.1002/mame.200600306. [25] Y. Yang, L. Fan, X. Qu, M. Ji, and S. Yang, “Fluorinated phenylethynyl-terminated imide oligomers with reduced melt viscosity and enhanced melt stability,” Polymer, vol. 52, no. 1, pp. 138–148, Jan. 2011, doi: 10.1016/j.polymer.2010.11.007. [26] D. Zhou, L. Yuan, W. Hong, H. Zhang, A. Hu, and S. Yang, “Molecular design of interpenetrating fluorinated polyimide network with enhanced high performance for heat-resistant matrix,” Polymer, vol. 173, pp. 66–79, May 2019, doi: 10.1016/j.polymer.2019.04.034. [27] L. Q. Reyes et al., “Synthesis of tri‐aryl ketone amine isomers and their cure with epoxy resins,” Polym. Adv. Technol., vol. 31, no. 4, pp. 827–837, Apr. 2020, doi: 10.1002/pat.4818. [28] R. J. Varley et al., “Effect of aromatic substitution on the kinetics and properties of epoxy cured tri‐phenylether amines,” J. Appl. Polym. Sci., vol. 136, no. 18, p. 47383, May 2019, doi: 10.1002/app.47383. [29] J. Misasi, “Hybrid Aryl-Ether-Ketone and Hyperbranched Epoxy Networks,” Dissertations, 2015. [30] C. Liu et al., “A study of the thermal cure of new trifunctional phenylethynyl terminated imide oligomers with reduced cure temperatures,” Polym. Degrad. Stab., vol. 98, no. 1, pp. 230–240, Jan. 2013, doi: 10.1016/j.polymdegradstab.2012.10.007. [31] D. Cho and L. T. Drzal, “FT-IR STUDIES ON IMIDIZATION AND END GROUP REACTION BEHAVIORS OF A PHENYLETHYNYL TERMINATED IMIDE OLIGOMER,” p. 10. [32] X. Li, M. Miyauchi, C. González, and S. Nutt, “Thermal oxidation of PEPA-terminated polyimide,” High Perform. Polym., vol. 31, no. 6, pp. 707–718, Aug. 2019, doi: 10.1177/0954008318787852. [33] D. Lee, H. V. Tippur, B. J. Jensen, and P. B. Bogert, “Tensile and Fracture Characterization of PETI-5 and IM7/PETI-5 Graphite/Epoxy Composites Under Quasi-Static and Dynamic Loading Conditions,” J. Eng. Mater. Technol., vol. 133, no. 2, p. 021015, Apr. 2011, doi: 10.1115/1.4003487.
Conference: CAMX 2022
Publication Date: 2022/10/17
SKU: TP22-0000000073
Pages: 11
Price: $22.00
Get This Paper