Get This Paper

Comparison of Mechanical and Morphological Properties of Ameo and Glymo Silane Treated Ragweed-Pla Bio-Composites


Title: Comparison of Mechanical and Morphological Properties of Ameo and Glymo Silane Treated Ragweed-Pla Bio-Composites

Authors: S. Panta, M. I. Mannan, S. A. A. Taqy, B. Martinez, L. Davis, R. Bomar , J. S. Tate

DOI: 10.33599/nasampe/c.22.0098

Abstract: Recent technology has acknowledged the necessity of environmentally friendly materials and to that effort, natural fiber reinforced composites are emerging at a greater rate. Fused deposition modeling (FDM) is showing greater promise among other additive manufacturing technologies to be implemented in the fabrication of Bio-composite material. The Bio-composite filament was manufactured using a Twin-Screw extruder at 10wt.% fiber loading and parameters like temperature, extruder speed was adjusted accordingly to obtain a fiber diameter of 1.65mm. In the first stance, there were lots of challenges in the manufacturing of bio-composites filament due to the hydrophilic tendency of the fiber which affects the fiber/matrix adhesion and as a result, the samples will have poor mechanical/morphological properties. In the current research, silane treatment of Ragweed fiber is performed using two different types of silanes to decrease its hydrophilic properties to have a better fiber/matrix interfacial adhesion between noble natural fiber Ragweed and Polylactic Acid (PLA). Comparative analysis of mechanical and morphological properties was performed using various characterization tools. Scanning electron microscopy (SEM) was used for analyzing surface morphology, effects of silane treatment, and fiber-matrix adhesion. After an initial observation of both silanes treated fiber in SEM, it was confirmed the presence of silicon on the fiber surfaces. Dispersive X-ray Spectroscopy (EDAX) is used to determine the density of the treatment on the sample surface. Thermal properties were analyzed using differential scanning calorimetry (DSC), and a comparison of the coefficient of thermal expansion was performed using thermomechanical analysis (TMA). After all, to analyze and compare the mechanical properties, the sample were 3D printed according to ASTM standards; ASTM D638 for the tensile test and ASTM D790 for the flexural test. Overall, the research is based on a comparison of mechanical and morphological properties of AMEO and GLYMO silane treated Ragweed fiber biocomposite with a detailed established optimum processing framework.

References: 1. Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries! Bioresource Technology, 99(11), 4661-4667. doi:10.1016/j.biortech.2007.09.043 2. Berglund, L., Rakar, J., Junker, J. P., Forsberg, F., & Oksman, K. (2020). Utilizing the Natural Composition of Brown Seaweed for the Preparation of Hybrid Ink for 3D Printing of Hydrogels. ACS Applied Bio Materials, 3(9), 6510-6520. 3. Biagiotti, J., Puglia, D., Torre, L., Kenny, J. M., Arbelaiz, A., Cantero, G., . . . Mondragon, I. (2004). A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polymer Composites, 25(5), 470-479. 4. Cai, M., Takagi, H., Nakagaito, A. N., Katoh, M., Ueki, T., Waterhouse, G. I., & Li, Y. (2015). Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Industrial Crops and Products, 65, 27-35. 5. Cai, M., Takagi, H., Nakagaito, A. N., Li, Y., & Waterhouse, G. I. (2016). Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 90, 589-597. 6. Chandrasekaran, S., Duoss, E. B., Worsley, M. A., & Lewicki, J. P. (2018). 3D printing of high performance cyanate ester thermoset polymers. Journal of Materials Chemistry A, 6(3), 853-858. 7. Chinga-Carrasco, G. (2018). Potential and limitations of nanocelluloses as components in biocomposite inks for three-dimensional bioprinting and for biomedical devices. Biomacromolecules, 19(3), 701-711. 8. Cisneros-López, E. O., Anzaldo, J., Fuentes-Talavera, F. J., González-Núñez, R., Robledo-Ortíz, J. R., & Rodrigue, D. (2017). Effect of agave fiber surface treatment on the properties of polyethylene composites produced by dry-blending and compression molding. Polymer Composites, 38(1), 96-104. doi: 9. Cisneros-López, E. O., González-López, M. E., Pérez-Fonseca, A. A., González-Núñez, R., Rodrigue, D., & Robledo-Ortíz, J. R. (2017). Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Composite Interfaces, 24(1), 35-53. doi:10.1080/09276440.2016.1184556 10. Depuydt, D., Balthazar, M., Hendrickx, K., Six, W., Ferraris, E., Desplentere, F., . . . Van Vuure, A. W. (2019). Production and characterization of bamboo and flax fiber reinforced polylactic acid filaments for fused deposition modeling (FDM). Polymer Composites, 40(5), 1951-1963. 11. Di Candilo, M., Bonatti, P., Guidetti, C., Focher, B., Grippo, C., Tamburini, E., & Mastromei, G. (2010). Effects of selected pectinolytic bacterial strains on water‐retting of hemp and fibre properties. Journal of applied microbiology, 108(1), 194-203. 12. Dong, Y., Milentis, J., & Pramanik, A. (2018). Additive manufacturing of mechanical testing samples based on virgin poly (lactic acid)(PLA) and PLA/wood fibre composites. Advances in Manufacturing, 6(1), 71-82. 13. Gamon, G., Evon, P., & Rigal, L. (2013). Twin-screw extrusion impact on natural fibre morphology and material properties in poly (lactic acid) based biocomposites. Industrial Crops and Products, 46, 173-185. 14. Girones, J., Vo, L. T. T., Haudin, J.-M., Freire, L., & Navard, P. (2017). Crystallization of polypropylene in the presence of biomass-based fillers of different compositions. Polymer, 127, 220-231. doi: 15. Herrera-Franco, P. J., & Drzal, L. T. (1992). Comparison of methods for the measurement of fibre/matrix adhesion in composites. Composites, 23(1), 2-27. doi:10.1016/0010-4361(92)90282-Y 16. Hong, C., Kim, N., Kang, S., Nah, C., Lee, Y.-S., Cho, B.-H., & Ahn, J.-H. (2008). Mechanical properties of maleic anhydride treated jute fibre/polypropylene composites. Plastics, Rubber and Composites, 37(7), 325-330. 17. Hossain, M. K., Karim, M. R., Chowdhury, M. R., Imam, M. A., Hosur, M., Jeelani, S., & Farag, R. (2014). Comparative mechanical and thermal study of chemically treated and untreated single sugarcane fiber bundle. Industrial Crops and Products, 58, 78-90. 18. Ilyas, R., Zuhri, M., Aisyah, H., Asyraf, M., Hassan, S., Zainudin, E., . . . Jumaidin, R. (2022). Natural Fiber-Reinforced Polylactic Acid, Polylactic Acid Blends and Their Composites for Advanced Applications. Polymers, 14(1), 202. 19. Jiang, Y., & Raney, J. R. (2019). 3D Printing of Amylopectin‐Based Natural Fiber Composites. Advanced Materials Technologies, 4(11), 1900521. 20. Kabir, M., Wang, H., Lau, K., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883-2892. 21. Khaled, S. A., Burley, J. C., Alexander, M. R., & Roberts, C. J. (2014). Desktop 3D printing of controlled release pharmaceutical bilayer tablets. International journal of pharmaceutics, 461(1-2), 105-111. 22. Khalil, H., Lai, T., Tye, Y., Rizal, S., Chong, E., Yap, S., . . . Paridah, M. (2018). A review of extractions of seaweed hydrocolloids: Properties and applications. Express Polymer Letters, 12(4). 23. Khan, Z., Yousif, B. F., & Islam, M. (2017). Fracture behaviour of bamboo fiber reinforced epoxy composites. Composites Part B: Engineering, 116, 186-199. doi: 24. Konczewicz, W., Zimniewska, M., & Valera, M. A. (2018). The selection of a retting method for the extraction of bast fibers as response to challenges in composite reinforcement. Textile Research Journal, 88(18), 2104-2119. 25. Koronis, G., Silva, A., & Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications. Composites Part B: Engineering, 44(1), 120-127. 26. Lam, C. X. F., Mo, X., Teoh, S.-H., & Hutmacher, D. (2002). Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering: C, 20(1-2), 49-56. 27. Liu, H., He, H., Peng, X., Huang, B., & Li, J. (2019). Three‐dimensional printing of poly (lactic acid) bio‐based composites with sugarcane bagasse fiber: Effect of printing orientation on tensile performance. Polymers for Advanced Technologies, 30(4), 910-922. 28. Long, Y., Zhang, Z., Fu, K., & Li, Y. (2021). Efficient plant fibre yarn pre-treatment for 3D printed continuous flax fibre/poly(lactic) acid composites. Composites Part B: Engineering, 227, 109389. doi:10.1016/j.compositesb.2021.109389 29. Mahjoub, R., Yatim, J. M., Sam, A. R. M., & Hashemi, S. H. (2014). Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construction and Building Materials, 55, 103-113. 30. Markstedt, K., Mantas, A., Tournier, I., Martínez Ávila, H., Hägg, D., & Gatenholm, P. (2015). 3D Bioprinting Human Chondrocytes with Nanocellulose–Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules, 16(5), 1489-1496. doi:10.1021/acs.biomac.5b00188 31. Mazzanti, V., Malagutti, L., & Mollica, F. (2019). FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties. Polymers, 11(7), 1094. doi:10.3390/polym11071094 32. Mishra, J. K., Hwang, K.-J., & Ha, C.-S. (2005). Preparation, mechanical and rheological properties of a thermoplastic polyolefin (TPO)/organoclay nanocomposite with reference to the effect of maleic anhydride modified polypropylene as a compatibilizer. Polymer, 46(6), 1995-2002. 33. Natural Fiber Composites Market Size | NFC Industry Report, 2018-2024. 34. Panthapulakkal, S., Law, S., & Sain, M. (2005). Enhancement of Processability of Rice Husk Filled High-density Polyethylene Composite Profiles. Journal of Thermoplastic Composite Materials, 18(5), 445-458. doi:10.1177/0892705705054398 35. Paridah, M. T., Basher, A. B., SaifulAzry, S., & Ahmed, Z. (2011). Retting process of some bast plant fibres and its effect on fibre quality: A review. Bioresources, 6(4), 5260-5281. 36. Pérez-Fonseca, A. A., Robledo-Ortíz, J. R., Moscoso-Sánchez, F. J., Fuentes-Talavera, F. J., Rodrigue, D., & González-Núñez, R. (2015). Self-hybridization and Coupling Agent Effect on the Properties of Natural Fiber/HDPE Composites. Journal of Polymers and the Environment, 23(1), 126-136. doi:10.1007/s10924-014-0706-3 37. Pérez-Fonseca, A. A., Robledo-Ortíz, J. R., Ramirez-Arreola, D. E., Ortega-Gudiño, P., Rodrigue, D., & González-Núñez, R. (2014). Effect of hybridization on the physical and mechanical properties of high density polyethylene–(pine/agave) composites. Materials & Design, 64, 35-43. doi: 38. Qin, C., Soykeabkaew, N., Xiuyuan, N., & Peijs, T. (2008). The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydrate polymers, 71, 458-467. doi:10.1016/j.carbpol.2007.06.019 39. Rajendran Royan, N. R., Leong, J. S., Chan, W. N., Tan, J. R., & Shamsuddin, Z. S. B. (2021). Current State and Challenges of Natural Fibre-Reinforced Polymer Composites as Feeder in FDM-Based 3D Printing. Polymers, 13(14), 2289. doi:10.3390/polym13142289 40. Rambo, C., Travitzky, N., Zimmermann, K., & Greil, P. (2005). Synthesis of TiC/Ti–Cu composites by pressureless reactive infiltration of TiCu alloy into carbon preforms fabricated by 3D-printing. Materials Letters, 59(8-9), 1028-1031. 41. Sanjay, M., Arpitha, G., Naik, L. L., Gopalakrishna, K., & Yogesha, B. (2016). Applications of natural fibers and its composites: An overview. Natural Resources, 7(3), 108-114. 42. Siakeng, R., Jawaid, M., Ariffin, H., Sapuan, S., Asim, M., & Saba, N. (2019). Natural fiber reinforced polylactic acid composites: A review. Polymer Composites, 40(2), 446-463. 43. Singha, A., & Rana, A. K. (2013). Effect of Aminopropyltriethoxysilane (APS) treatment on properties of mercerized lignocellulosic grewia optiva fiber. Journal of Polymers and the Environment, 21(1), 141-150. 44. Sisti, L., Totaro, G., Vannini, M., & Celli, A. (2018). Retting process as a pretreatment of natural fibers for the development of polymer composites. In Lignocellulosic composite materials (pp. 97-135): Springer. 45. Stoof, D., Pickering, K., & Zhang, Y. (2017). Fused deposition modelling of natural fibre/polylactic acid composites. Journal of Composites Science, 1(1), 8. 46. Subash Panta, Y. T., Liam Omer, and Ken Mix. (2022). Comparison of Novel Natural Fiber Reinforced Bio-composites with Commercial Bamboo Bio-composites. . Society for the Advancement of Material and Process Engineering. 47. Sullins, T., Pillay, S., Komus, A., & Ning, H. (2017). Hemp fiber reinforced polypropylene composites: The effects of material treatments. Composites Part B: Engineering, 114, 15-22. doi: 48. Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., & Lewis, J. A. (2016). Biomimetic 4D printing. Nature materials, 15(4), 413-418. 49. Thomason, J., Jenkins, P., & Yang, L. (2016). Glass fibre strength—a review with relation to composite recycling. Fibers, 4(2), 18. 50. Tran, L., Yuan, X., Bhattacharyya, D., Fuentes, C., Van Vuure, A. W., & Verpoest, I. (2015). Fiber-matrix interfacial adhesion in natural fiber composites. International Journal of Modern Physics B, 29(10n11), 1540018. 51. Xie, Y., Hill, C. A., Xiao, Z., Militz, H., & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806-819.

Conference: CAMX 2022

Publication Date: 2022/10/17

SKU: TP22-0000000098

Pages: 19

Price: $38.00

Get This Paper