Title: Investigations of Phosphate Geopolymers
Authors: W. Jacob Monzel,Olivia Meyer, Kyle Schroeder, Allison Hohenshil, Adam Rape, Kathryn Doyle,Devon M. Samuel, Waltraud M. Kriven
DOI: 10.33599/nasampe/c.22.0145
Abstract: Phosphate geopolymers are ceramics synthesized by reaction of a solid aluminosilicate with an aqueous acidic phosphate, typically with an overall composition of 2 SiO2⋅Al2O3⋅P2O5⋅n H2O. Their high thermal stability and low precursor cost make them attractive for a variety of applications, in particular as a matrix material at temperatures above which organic polymer composites degrade. However, technical barriers and knowledge gaps regarding synthesis of the geopolymer resin currently hinder their widespread use. The precursor and processing conditions strongly affect the phase evolution and final properties of these materials. In this work, challenges with the neat resin involving processing, microcracking, and phase transformations were identified and methods were developed to mitigate them through analysis of hydrolytic behavior and microstructure. The impact of processing conditions on resulting thermomechanical properties, and phase evolution with temperature was investigated for selected materials. The oxide precursor characteristics, in particular five-coordinated aluminum content, were found to correlate to some degree with curing time and water stability. A post-curing heating step was found to significantly reduce cracking and porosity, improving stability at higher temperatures. While all phosphate geopolymers crystallized above 110 °C, the phase distribution and rates depended on the processing conditions and whether or not the precursor contained silica.
References: 1. Wang, Y.-S.; Alrefaei, Y.; Dai, J.-G., ""Silico-Aluminophosphate and Alkali-Aluminosilicate Geopolymers: A Comparative Review."" Frontiers in Materials 6, 106, (2019). 10.3389/fmats.2019.00106. 2. Perera, D.; Hanna, J.; Davis, J.; Blackford, M.; Latella, B.; Sasaki, Y.; Vance, E., ""Relative strengths of phosphoric acid-reacted and alkali-reacted metakaolin materials."" J Mater Sci 43, 19, (2008), 6562-6566. 10.1007/s10853-008-2913-6. 3. Kriven, W.M., 5.9 Geopolymer-Based Composites. In Comprehensive Composite Materials II, Oxford: Beaumont, P. W. R.; Zweben, C. H., Eds. Elsevier: Oxford, 2018; pp 269-280. 10.1016/B978-0-12-803581-8.09995-1. 4. Kriven, W.M., Geopolymers and Geopolymer-Derived Composites. In Encyclopedia of Materials: Technical Ceramics and Glasses, Oxford: Pomeroy, M., Ed. Elsevier: Oxford, 2021; pp 424-438. 10.1016/B978-0-12-818542-1.00100-4. 5. Wagh, A.S., Chemically Bonded Phosphate Ceramics (Second Edition) Twenty-First Century Materials with Diverse Applications. Elsevier: 2016; p 422. 10.1016/C2014-0-02562-2. 6. Morris, J.H.; Perkins, P.G.; Rose, A.E.A.; Smith, W.E., ""The chemistry and binding properties of aluminium phosphates."" Chemical Society Reviews 6, 2, (1977), 173-194. 10.1039/CS9770600173. 7. Mackenzie, K.; Welter, M., ""Geopolymer (aluminosilicate) composites: Synthesis, properties and applications."" Advances in Ceramic Matrix Composites (2014), 445-470. 10.1533/9780857098825.3.445. 8. Ormiston, T., Tanzilli, R.A., Development of an External Ceramic Insulation for the Space Shuttle Orbiter - Part 3: Development of Stabilized Aluminum Phosphate Fibers. Center, N. L. R., Ed. General Electric Company: 1973. 9. Alexander, G.B.; Heston, W.M.; Iler, R.K., ""The Solubility of Amorphous Silica in Water."" The Journal of Physical Chemistry 58, 6, (1954), 453-455. 10.1021/j150516a002. 10. Mathivet, V.; Jouin, J.; Gharzouni, A.; Sobrados, I.; Celerier, H.; Rossignol, S.; Parlier, M., ""Acid-based geopolymers: Understanding of the structural evolutions during consolidation and after thermal treatments."" Journal of Non-Crystalline Solids 512, (2019), 90-97. 10.1016/j.jnoncrysol.2019.02.025. 11. Celerier, H.; Jouin, J.; Gharzouni, A.; Mathivet, V.; Sobrados, I.; Tessier-Doyen, N.; Rossignol, S., ""Relation between working properties and structural properties from 27Al, 29Si and 31P NMR and XRD of acid-based geopolymers from 25 to 1000°C."" Materials Chemistry and Physics 228, (2019), 293-302. 10.1016/j.matchemphys.2019.02.049. 12. Monzel, W.J.; Kriven, W.M.; Gadikota, G.; Neher, G.; Samuel, D.; Hohenshil, A.; Asgar, H. In Investigations of SilicoAluminoPhosphate Geopolymer Glass-Ceramics, 46th International Conference and Expo on Advanced Ceramics and Composites, Virtual, Jan 26th 2022; Virtual, 2022. 13. Enfedaque, A.; Alberti, M.G.; Gálvez, J.C.; Mengie, S., ""Influence of Natural Weather Conditions in the Long-Term Fracture Energy of Glass Fibre Reinforced Cement (GRC) Modified with Chemical Additions."" Materials 14, 12, (2021), 3355. 10.3390/ma14123355 14. Lawson, J.L. On the Determination of the Elastic Properties of Geopolymeric Materials Using Non-Destructive Ultrasonic Techniques. Rochester Institute of Technology, Rochester NY, 2008. 15. Katsiki, A.; Hertel, T.; Tysmans, T.; Pontikes, Y.; Rahier, H., ""Metakaolinite Phosphate Cementitious Matrix: Inorganic Polymer Obtained by Acidic Activation."" Materials 12, 3, (2019), 442. 10.3390/ma12030442 16. Nguyen, M.H.; Lee, S.-J.; Kriven, W.M., ""Synthesis of oxide powders by way of a polymeric steric entrapment precursor route."" Journal of Materials Research 14, 8, (1999), 3417-3426. 10.1557/JMR.1999.0462. 17. Gordon, M.; Bell, J.L.; Kriven, W.M., Comparison of Naturally and Synthetically-Derived, Potassiumbased Geopolymers. In Advances in Ceramic Matrix Composites X, 2006; pp 95-106. 10.1002/9781118408353.ch9. 18. Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J.-O.; Bujoli, B.; Gan, Z.; Hoatson, G., ""Modelling one- and two-dimensional solid-state NMR spectra."" Magnetic Resonance in Chemistry 40, 1, (2002), 70-76. 10.1002/mrc.984. 19. Coelho, A., ""TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++."" Journal of Applied Crystallography 51, 1, (2018), 210-218. 10.1107/S1600576718000183. 20. Seymour, K.C.; Hughes, R.W.; Kriven, W.M., ""Thermal Expansion of the Orthorhombic Phase in the Ln2TiO5 System."" Journal of the American Ceramic Society 98, 12, (2015), 4096-4101. 10.1111/jace.13821. 21. Garg, N.; Wang, K., ""Comparing the performance of different commercial clays in fly ash-modified mortars."" Journal of Sustainable Cement-Based Materials 1, 3, (2012), 111-125. 10.1080/21650373.2012.745217. 22. Powerpozz HRM (standard) technical data sheet. Washington, USA.: Advanced Cement Technologies, I., Ed. 2017. 23. Argical M 1200S technical data sheet. France: merys Performance Minerals, a. d. o. I. S., Ed. 2017. 24. DeWulf, D., MetaStar 501 HP properties. Samuel, D., Ed. Imerys Performance Minerals.: 20170. 25. Bergerhoff, G.; Brown, I.; Allen, F., ""Crystallographic databases."" International Union of Crystallography, Chester 360, (1987), 77-95. 26. Byrappa, K.; Srikantaswamy, S.; Gopalakrishna, G.S.; Venkatachalapathy, V., ""Influence of admixtures on the α—β berlinite transition."" Journal of Materials Science Letters 5, 3, (1986), 347-348. 10.1007/BF01748101. 27. Ormiston , T., Tanzilli, R.A., Development of an External Ceramic Insulation for the Space Shuttle Orbiter - Part 3: Development of Stabilized Aluminum Phosphate Fibers. Center, N. L. R., Ed. General Electric Company: 1973.
Conference: CAMX 2022
Publication Date: 2022/10/17
SKU: TP22-0000000145
Pages: 16
Price: $32.00
Get This Paper