Get This Paper

Impregnation of High-Rate Carbon Fiber Composites


Title: Impregnation of High-Rate Carbon Fiber Composites

Authors: Alex M. Reichanadter, Jan-Anders E. Mansson

DOI: 10.33599/nasampe/c.22.0177

Abstract: Traditional carbon fibers are expensive to produce because of the costly precursor production and carbonization step. Significant cost savings can be achieved by varying the manufacturing conditions during the precursor production. These efforts have resulted in a relatively inexpensive fiber with comparable mechanical properties to standard modulus carbon fiber. However, the resulting fiber cross-sections were irregular and resembled a kidney-bean shape. The irregularity of the cross-sectional shape raised concerns over the downstream processing steps for polymer composites. The fiber bed permeability is a critical value to determine the infiltration time needed for prepregging or other resin infiltration processes. In this study, flow simulations were performed on regularly packed kidney-bean shaped fibers to determine the transverse permeability. The flow simulations considered unit cell fiber volume fractions from 0.30 – 0.75. Three flow directions were considered for each unit-cell of 0°, +90°, and -90° because of the anisotropy in the fiber cross-sectional shape. Additionally, the asymmetry resulted in two valid hexagonal packing arrangements, where a kidney-bean shaped fiber could pack more efficiently than a circular fiber, 0.923 vs 0.907. When comparing the permeability of the hexagonally packed kidney-bean shaped fibers to hexagonally packed circular fibers, a reduction in transverse permeability up 74% was observed. This reduction in permeability was noted for the +/-90° unit cell orientations, while the 0° orientation had comparable permeability to circular fibers. This was an important finding because kidney-bean shaped carbon fiber may have an infiltration process time up to 4 times longer than for more conventional circular fibers.

References: 1. Jones RM. Mechanics of Composite Materials. 2nd ed. CRC Press; 1999. doi:10.1201/9781498711067 2. Martensson P, Zenkert D, Akerrno M. Effects of manufacturing constraints on the cost and weight efficiency of integral and differential automotive composite structures. Composite Structures. 2015;134:572-578. doi:10.1016/j.compstruct.2015.08.115 3. Baker DA, Rials TG. Recent advances in low-cost carbon fiber manufacture from lignin. Journal of Applied Polymer Science. 2013;130(2):713-728. doi:10.1002/app.39273 4. Khayyam H, Jazar RN, Nunna S, et al. PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: Experimental and mathematical modelling. Progress in Materials Science. 2020;107(June 2019):100575. doi:10.1016/j.pmatsci.2019.100575 5. Nunna S, Maghe M, Rana R, et al. Time dependent structure and property evolution in fibres during continuous carbon fibre manufacturing. Materials. 2019;12(7). doi:10.3390/ma12071069 6. Gill AS, Visotsky D, Mears L, Summers JD. Cost Estimation Model for Polyacrylonitrile-Based Carbon Fiber Manufacturing Process. Journal of Manufacturing Science and Engineering, Transactions of the ASME. 2017;139(4):1-8. doi:10.1115/1.4034713 7. Ogale A, Zhang M, Jin J. Sustainable polymers and polymer science: Dedicated to the life and work of Richard P. Wool. Journal of Applied Polymer Science. 2016;133(45). doi:10.1002/app.44212 8. Dong R, Keuser M, Zeng X, et al. Phase equilibria and charge fractionation in polydisperse polyelectrolyte solutions. Published online 2004. doi:10.1002/polb 9. Reichanadter A, Mansson JAE. Permeability simulation of kidney-bean shaped carbon fibers. Materials Today Communications. 2022;31:103385. doi:10.1016/j.mtcomm.2022.103385 10. Molyneux M, Murray P, P. Murray B. Prepreg, tape and fabric technology for advanced composites. Composites. 1983;14(2):87-91. doi:10.1016/S0010-4361(83)80003-2 11. Dave R, Kardos JL, Dudukovic MP. A Model For Resin Flow During Composite Processing .1. General Mathematical Development. Polymer Composites. 1987;8(1):29-38. doi:10.1002/pc.750080106 12. Gebart BR. Permeability of unidirectional reinforcements for RTM. Journal of Composite Materials. 1992;26(8):1100-1133. doi:10.1177/002199839202600802 13. Astrom BT, Pipes RB, Advani SG. On flow through aligned fiber beds and its application to composites processing. Journal of Composite Materials. 1992;26(9):1351-1373. doi:10.1177/002199839202600907 14. Connor M, Toll S, Manson JAE, Gibson AG. A Model For The Consolidation Of Aligned Thermoplastic Powder Impregnated Composites. Journal of Thermoplastic Composite Materials. 1995;8(2):138-162. 15. Shou DH, Ye L, Fan JT. On the longitudinal permeability of aligned fiber arrays. Journal of Composite Materials. 2015;49(14):1753-1763. doi:10.1177/0021998314540192 16. Cihat Bayta A, Erdem D, Acar H, Cetiner O, Basci H. Experimental investigation of interfacial conditions between fluid and porous layer formed by periodic arrays of circular and non-circular cylinders. Acta Physica Polonica A. 2018;133(5):1314-1323. doi:10.12693/APhysPolA.133.1314 17. Yazdchi K, Srivastava S, Luding S. Microstructural effects on the permeability of periodic fibrous porous media. International Journal of Multiphase Flow. 2011;37(8):956-966. doi:10.1016/j.ijmultiphaseflow.2011.05.003 18. Gutowski TG, Cai Z, Bauer S, Boucher D, Kingery J, Wineman S. Consolidation Experiments For Laminate Composites. Journal of Composite Materials. 1987;21(7):650-669. doi:10.1177/002199838702100705 19. Carman PG. Fluid flow through granular beds. Chemical Engineering Research and Design. 1937;75(1 SUPPL.):S32-S48. doi:10.1016/s0263-8762(97)80003-2 20. Li M, Gu YZ, Zhang ZG, Sun ZJ. A simple method for the measurement of compaction and corresponding transverse permeability of composite prepregs. Polymer Composites. 2007;28(1):61-70. doi:10.1002/pc.20255 21. Nguyen VH, Lagardere M, Park CH, Panier S. Permeability of natural fiber reinforcement for liquid composite molding processes. Journal of Materials Science. 2014;49(18):6449-6458. doi:10.1007/s10853-014-8374-1 22. Sadiq TAK, Advani SG, Parnas RS. Experimental Investigation Of Transverse Flow-Through Aligned Cylinders. International Journal of Multiphase Flow. 1995;21(5):755-774. doi:10.1016/0301-9322(95)00026-t 23. Ganapathi AS, Joshi SC, Chen Z. Flow-compacted deformations coupled with thermo-chemically induced distortions in manufacturing of thick unidirectional carbon fiber reinforced plastics composites. Journal of Composite Materials. 2016;50(24):3325-3343. doi:10.1177/0021998315618455 24. Simacek P, Advani SG. Simulating tape resin infiltration during thermoset pultrusion process. Composites Part a-Applied Science and Manufacturing. 2015;72:115-126. doi:10.1016/j.compositesa.2015.01.020 25. Amico S, Lekakou C. An experimental study of the permeability and capillary pressure in resin-transfer moulding. Composites Science and Technology. Published online 2001. doi:10.1016/S0266-3538(01)00104-X 26. Seo JW, Lee WL. A model of the resin impregnation in thermoplastic composites. Journal of Composite Materials. 1991;25(9):1127-1142. doi:10.1177/002199839102500903 27. Westhuizen J, Plessis JP du. Quantification of Unidirectional Fiber Bed Permeability. Journal of Composite Materials. 1994;28(7):619-637. doi:10.1177/002199839402800703 28. Lam RC, Kardos JL. The permeability and compressibility of aligned and cross-plied carbon-fiber beds during processing of composites. Polymer Engineering and Science. 1991;31(14):1064-1070. doi:10.1002/pen.760311411 29. Chohra M, Advani SG, Gokce A, Yarlagadda S. Modeling of filtration through multiple layers of dual scale fibrous porous media. Polymer Composites. 2006;27(5):570-581. doi:10.1002/pc.20228

Conference: CAMX 2022

Publication Date: 2022/10/17

SKU: TP22-0000000177

Pages: 13

Price: $26.00

Get This Paper