Get This Paper

Improvement Of The Joining Performance Of Fiber-Reinforced Composite With Polyamide 66 Nanofibers Produced By The Electrospinning Method


Title: Improvement Of The Joining Performance Of Fiber-Reinforced Composite With Polyamide 66 Nanofibers Produced By The Electrospinning Method

Authors: Gözde Esenoğlu, Mehmet Erdem İriş, Serkan Dehneliler

DOI: 10.33599/nasampe/c.23.0036

Abstract: In this study, electrospun polyamide-6.6 (PA 66) nanofibers were added to bond surfaces to improve the bond strength of a structural fiber-reinforced composite. For this purpose, the nanofibers were coated on the UD carbon/epoxy prepregs. Composite laminates were fabricated using the autoclave method, employing carbon/epoxy prepregs with/without PA66 nanofibers incorporation of the bond region. A single lap shear, Charpy impact energy, and Mode-I fracture toughness tests were applied to the reference and PA 66 coated samples to examine the effects of PA 66 nanofibers on the mechanical properties of the joint region of the composites. The morphology and fracture modes of the nanofibers were investigated by scanning electron microscopy (SEM). The thermal properties of PA66 nanofibers were investigated by the differential scanning calorimetry (DSC) method. It was found that the PA 66 nanofibers coated on the prepreg surfaces by electrospinning are very effective in improving the strength of composite joints. The results revealed that single lap shear and Charpy impact strength values of the composite joint are increased by about 79% and 24%, respectively, by coating PA 66 nanofibers to the joint region. The results also showed that by using PA 66 nanofibers, the Mode-I fracture toughness value was improved by about 107%, and Tg was not affected.

References: A. K. Noor, S. L. Venneri, D. B. Paul, and M. A. Hopkins, “Structures technology for future aerospace systems,” Comput. Struct., vol. 74, no. 5, pp. 507–519, 2000, doi: 10.1016/S0045-7949(99)00067-X. [2] N. Encinas et al., “Surface modification of aircraft used composites for adhesive bonding,” Int. J. Adhes. Adhes., vol. 50, pp. 157–163, 2014, doi: 10.1016/j.ijadhadh.2014.01.004. [3] C. B. G. Brito, R. De Cássia Mendonça Sales Contini, R. F. Gouvêa, A. S. De Oliveira, M. A. Arbelo, and M. V. Donadon, “Mode I interlaminar fracture toughness analysis of Cobonded and secondary bonded carbon fiber reinforced composites joints,” Mater. Res., vol. 20, pp. 873–882, 2017, doi: 10.1590/1980-5373-mr-2016-0805. [4] K. C. Shin, J. J. Lee, and D. G. Lee, “A study on the lap shear strength of a co-cured single lap joint,” J. Adhes. Sci. Technol., vol. 14, no. 1, pp. 123–139, 2000, doi: 10.1163/156856100742140. [5] S. Omairey, N. Jayasree, and M. Kazilas, “Defects and uncertainties of adhesively bonded composite joints,” SN Appl. Sci., vol. 3, no. 9, 2021, doi: 10.1007/s42452-021-04753-8. [6] L. Ke, C. Li, N. Luo, J. He, Y. Jiao, and Y. Liu, “Enhanced comprehensive performance of bonding interface between CFRP and steel by a novel film adhesive,” Compos. Struct., vol. 229, no. June, 2019, doi: 10.1016/j.compstruct.2019.111393. [7] C. H. Wang and P. Chalkley, “Plastic yielding of a film adhesive under multiaxial stresses,” Int. J. Adhes. Adhes., vol. 20, no. 2, pp. 155–164, 2000, doi: 10.1016/S0143- 7496(99)00033-0. [8] M. G. Song et al., “Effect of manufacturing methods on the shear strength of composite single-lap bonded joints,” Compos. Struct., vol. 92, no. 9, pp. 2194–2202, 2010, doi: 10.1016/j.compstruct.2009.08.041. [9] J. Mohan, A. Ivanković, and N. Murphy, “Mode i fracture toughness of co-cured and secondary bonded composite joints,” Int. J. Adhes. Adhes., vol. 51, pp. 13–22, 2014, doi: 10.1016/j.ijadhadh.2014.02.008. [10] X. Li, R. Tao, A. Yudhanto, and G. Lubineau, “How the spatial correlation in adhesion properties influences the performance of secondary bonding of laminated composites,” Int. J. Solids Struct., vol. 196–197, pp. 41–52, 2020, doi: 10.1016/j.ijsolstr.2020.04.012. [11] S. Budhe, M. D. Banea, S. de Barros, and L. F. M. da Silva, “An updated review of UNCLASSIFIED UNCLASSIFIED adhesively bonded joints in composite materials,” Int. J. Adhes. Adhes., vol. 72, no. October 2016, pp. 30–42, 2017, doi: 10.1016/j.ijadhadh.2016.10.010. [12] J. Mohan, A. Ivanković, and N. Murphy, “Mixed-mode fracture toughness of co-cured and secondary bonded composite joints,” Eng. Fract. Mech., vol. 134, pp. 148–167, 2015, doi: 10.1016/j.engfracmech.2014.12.005. [13] S. K. Mazumdar and P. K. Mallick, “Static and fatigue behavior of adhesive joints in SMCSMC composites,” Polym. Compos., vol. 19, no. 2, pp. 139–146, 1998, doi: 10.1002/pc.10084. [14] B. Beylergil, M. Tanoğlu, and E. Aktaş, “Enhancement of interlaminar fracture toughness of carbon fiber–epoxy composites using polyamide-6,6 electrospun nanofibers,” J. Appl. Polym. Sci., vol. 134, no. 35, pp. 1–12, 2017, doi: 10.1002/app.45244. [15] A. Mohan, “Formation and Characterization of Electrospun Nonwoven Webs,” Text. Manag.Technol.,2002,[Online].Available: f426-0a97-dd89-4e13-fa027cfe584a&documentId=c2902bde-2e32-39df-80cd8f3b76838cea. [16] J. Lyons, C. Li, and F. Ko, “Melt-electrospinning part I: Processing parameters and geometric properties,” Polymer (Guildf)., vol. 45, no. 22, pp. 7597–7603, 2004, doi: 10.1016/j.polymer.2004.08.071. [17] C. Kim, S. H. Park, W. J. Lee, and K. S. Yang, “Characteristics of supercapaitor electrodes of PBI-based carbon nanofiber web prepared by electrospinning,” Electrochim. Acta, vol. 50, no. 2-3 SPEC. ISS., pp. 877–881, 2004, doi: 10.1016/j.electacta.2004.02.071. [18] H. Le Lam, “Electrospinning of Single Wall Carbon Nanotube Reinforced Aligned Fibrils and Yarns,” A Thesis Submitt. to Fac. Drexel Univ., vol. 2004, no. October, p. 246, 2004, [Online]. Available: [19] H. Niu, X. Wang, and T. Lin, “Needleless electrospinning: Influences of fibre generator geometry,” J. Text. Inst., vol. 103, no. 7, pp. 787–794, Jul. 2012, doi: 10.1080/00405000.2011.608498. [20] E. Jentzsch, Ö. Gül, and E. Öznergiz, “A comprehensive electric field analysis of a multifunctional electrospinning platform,” J. Electrostat., vol. 71, no. 3, pp. 294–298, Jun. 2013, doi: 10.1016/j.elstat.2012.12.007. [21] A. Retolaza, J. I. Eguiazábal, and J. Nazábal, “Structure and mechanical properties of polyamide-6,6/poly(ethylene terephthalate) blends,” Polym. Eng. Sci., vol. 44, no. 8, pp. 1405–1413, 2004, doi: 10.1002/pen.20136. [22] D. Saz-orozco, D. Ray, and W. F. Stanley, “Effect of Thermoplastic Veils on Interlaminar Fracture Toughness of a Glass Fiber / Vinyl Ester Composite,” 2015, doi: 10.1002/pc. [23] R. H. Sanatgar, S. Borhani, S. A. H. Ravandi, and A. A. Gharehaghaji, “The influence of solvent type and polymer concentration on the physical properties of solid state polymerized PA66 nanofiber yarn,” J. Appl. Polym. Sci., vol. 126, no. 3, pp. 1112–1120, Nov. 2012, doi: 10.1002/app.36871. [24] G. W. Beckermann and K. L. Pickering, “Mode i and Mode II interlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils,” Compos. Part A Appl. Sci. Manuf., vol. 72, pp. 11–21, 2015, doi: 10.1016/j.compositesa.2015.01.028. [25] M. T. Aljarrah and N. R. Abdelal, “Improvement of the mode I interlaminar fracture toughness of carbon fiber composite reinforced with electrospun nylon nanofiber,” Compos. Part B Eng., vol. 165, pp. 379–385, May 2019, doi: 10.1016/j.compositesb.2019.01.065. UNCLASSIFIED UNCLASSIFIED [26] D. H. Kang and H. W. Kang, “Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process,” Appl. Surf. Sci., vol. 387, pp. 82–88, 2016, doi: 10.1016/j.apsusc.2016.06.096. [27] U. Stachewicz and A. H. Barber, “Enhanced wetting behavior at electrospun polyamide nanofiber surfaces,” Langmuir, vol. 27, no. 6, pp. 3024–3029, 2011, doi: 10.1021/la1046645. [28] R. Beigmoradi, A. Samimi, and D. Mohebbi-Kalhori, “Fabrication of polymeric nanofibrous mats with controllable structure and enhanced wetting behavior using one-step electrospinning,” Polymer (Guildf)., vol. 143, pp. 271–280, 2018, doi: 10.1016/j.polymer.2018.04.025.

Conference: CAMX 2023

Publication Date: 2023/10/30

SKU: TP23-0000000036

Pages: 12

Price: $24.00

Get This Paper