Search

DIGITAL LIBRARY: CAMX 2023 | ATLANTA, GA | OCTOBER 30-NOVEMBER 2

Get This Paper

In-situ pultrusion of nylon 6 based profiles – Key parameters of the process

Description

Title: In-situ pultrusion of nylon 6 based profiles – Key parameters of the process

Authors: Michael Wilhelm , Georg Zeeb , Philipp Rosenberg, Frank Henning

DOI: 10.33599/nasampe/c.23.0095

Abstract: Pultruded profiles based on thermoplastic matrices are increasingly emerging as a material of choice for the industry due to their special advantages such as easy recyclability, opportunities to be functionalized with injection or compression overmolding, thermoforming, etc.. The production of these thermoplastic profiles can be done in several ways. The reactive processing of the monomer ε-caprolactam which polymerizes to polyamide 6 (the so-called "in-situ pultrusion"), makes it possible to achieve high fiber content and excellent mechanical properties at competitive raw material costs. The production of profiles with 73% FVC of glass and 74% FVC of carbon fibers at haul-off speeds up to 2 m/min has been proven successfully, as of now. For high quality of the profiles produced at high haul-off speeds, deep knowledge of material parameters, process parameters and conditions as well as their interactions is necessary. In this study, a statistical screening “Design of Experiment” (DoE) trial campaign with the seven most promising parameters was carried out to establish the ones that have a significant influence on profile quality and process robustness. The results show that four of the seven parameters are significant, comprising the amount of activator and catalyst, the temperature for fiber preheating, the fiber volume content and the haul-off speed.

References: [1] T. F. Starr, Ed., Pultrusion for engineers. Boca Raton, Fla.: CRC Press, 2000. [2] M. Wilhelm, “In-situ pultrusion of nylon 6 based profiles – Material properties and Recycling,” Chicago, USA, May. 16 2023. [3] K. Minchenkov, A. Vedernikov, A. Safonov, and I. Akhatov, “Thermoplastic Pultrusion: A Review,” Polymers, vol. 13, no. 2, 2021, doi: 10.3390/polym13020180. [4] M. Wilhelm, R. Wendel, M. Aust, P. Rosenberg, and F. Henning, “Compensation of Water Influence on Anionic Polymerization of ε-Caprolactam: 1. Chemistry and Experiments,” J. Compos. Sci., vol. 4, no. 1, p. 7, 2020, doi: 10.3390/jcs4010007. [5] R. Wendel, P. Rosenberg, M. Wilhelm, and F. Henning, “Anionic Polymerization of ε-Caprolactam under the Influence of Water: 2. Kinetic Model,” J. Compos. Sci., vol. 4, no. 1, p. 8, 2020, doi: 10.3390/jcs4010008. [6] B.-G. Cho, S. P. McCarthy, J. P. Fanucci, and S. C. Nolet, “Fiber reinforced nylon-6 composites produced by the reaction injection pultrusion process,” Polym Compos, vol. 17, no. 5, pp. 673–681, 1996, doi: 10.1002/pc.10659. [7] P. Thieleke and C. Bonten, “Influence of the fiber preheating in in-situ pultrusion of continuous fiber-reinforced thermoplastic profiles,” in FRACTURE AND DAMAGE MECHANICS: Theory, Simulation and Experiment, Mallorca, Spain, 2020, p. 20054. [8] A. Brack, Kontinuierliche Herstellung von miniaturisierten Endlosprofilen aus thermoplastischen Faserverbundkunststoffen, 1st ed. Aachen: Apprimus Verlag, 2019. [9] A. Brack, H. Janssen, and C. Brecher, “Manufacturing of miniaturized thermoplastic FRP components using a novel reaction injection pultrusion process,” in SAMPE Seattle 2017: Conference: May 22-25, 2017, exhibition: May 23-24, 2017, Washington State Convention Center, Seattle, Washington, Diamond Bar, CA: The Society for the Advancement of Material and Process Engineering (SAMPE), 2017, pp. 944–957. [10] K. Chen, M. Jia, S. Hua, and P. Xue, “Optimization of initiator and activator for reactive thermoplastic pultrusion,” J Polym Res, vol. 26, no. 2, p. 153, 2019. [11] K. Chen, M. Jia, H. Sun, and P. Xue, “Thermoplastic Reaction Injection Pultrusion for Continuous Glass Fiber-Reinforced Polyamide-6 Composites,” Materials, vol. 12, no. 3, p. 463, 2019, doi: 10.3390/ma12030463. [12] Stefan Epple, “In-situ-Pultrusion von Polyamid 6 zur lokalen, lastpfadgerechten Verstärkung von Polyamid-Spritzgießbauteilen,” Dissertation, Institut für Kunststofftechnik IKT, Universität Stuttgart, Stuttgart, 2018. [13] S. Epple and C. Bonten, “Production of continuous fiber thermoplastic composites by in-situ pultrusion,” in AIP Conference Proceedings, pp. 454–457. [14] X. Ning and H. Ishida, “RIM-pultrusion of nylon-6 and rubber-toughened nylon-6 composites,” Polym. Eng. Sci., vol. 31, no. 9, pp. 632–637, 1991, doi: 10.1002/pen.760310903. [15] S. Epple and C. Bonten, “In-situ-pultrusion – bonding of FRP-parts to PA6,” in Graz, Austria, 2016, p. 90002. [16] X. Ding, Q. He, Q. Yang, S. Wang, and K. Chen, “Numerical Simulation of Impregnation Process of Reactive Injection Pultrusion for Glass Fiber/PA6 Composites,” Polymers, vol. 14, no. 4, 2022, doi: 10.3390/polym14040666. [17] K. A. Weidenmann, L. Baumgärtner, and B. Haspel, “The Edge Shear Test - An Alternative Testing Method for the Determination of the Interlaminar Shear Strength in Composite Materials,” MSF, 825-826, pp. 806–813, 2015, doi: 10.4028/www.scientific.net/MSF.825-826.806. [18] C. B. P. Thieleke, “Einfluss der Faservorwärmung bei der In-Situ-Pultrusion von endlosfaserverstärkten thermoplastischen Profilen,” 26. Stattgarter Kunststoffkolloquium, 2019. [19] S. S. Rahatekar and J. A. Roux, “Numerical Simulation of Pressure Variation and Resin Flow in Injection Pultrusion,” Journal of Composite Materials, vol. 37, no. 12, pp. 1067–1082, 2003, doi: 10.1177/0021998303037012005. [20] D. Krebs, “Grundlagen der Pultrusion zur Fertigung von FV-Bauteilen für die Anforderungen der automobilen Großserie,” [21] M. Brennan, M. Connolly, and T. Shidaker, “CFD Modeling of the Closed Injection Wet-Out Process for Pultrusion,” Auburn Hills, Michigan USA, 2008. [22] B. K. Ranga, J. A. Roux, J. G. Vaughan, and A. L. Jeswani, “Effect of injection chamber length and pull speed of tapered resin injection pultrusion,” Journal of Reinforced Plastics and Composites, vol. 30, no. 16, pp. 1373–1387, 2011, doi: 10.1177/0731684411422415. [23] F. Tucci, D. Larrea-Wachtendorff, G. Ferrari, and P. Carlone, “Pulling force analysis in injection pultrusion of glass/epoxy composites,” Materials and Manufacturing Processes, pp. 1–12, 2022, doi: 10.1080/10426914.2022.2049296. [24] F. T. Wilhelm, “Einsatz von Leistungsultraschall in der geschlossenen Injektions-Pultrusion,” Dissertation., Fakultät für Luftfahrt, Raumfahrt und Geodäsie, Technischen Universität München, München, 2021. [25] S. Strauß and F. Wilhelm, “Development of a Flexible Injection and Impregnation Chamber for Pultrusion of High Reactive Resins,” Procedia Manufacturing, vol. 47, pp. 956–961, 2020, doi: 10.1016/j.promfg.2020.04.294. [26] S. Strauß, S. Boysen, A. Senz, F. Wilhelm, and N. Rilli, “Analysis of the mechanical composite properties of ii-chamber variations in the closed injection pultrusion process,” ESAFORM 2021, 2021, doi: 10.25518/esaform21.970. [27] J. Blaurock, Zur Optimierung des Strangziehverfahrens für endlosfaserverstärkte, hochfeste Kunststoffprofile: = Optimisation of the pultrusion process for continuous fibre reinforced, high strength plastic profiles. Zugl.: Aachen, Techn. Hochsch., Diss., 1999. Aachen: Mainz, 1999. [28] F. Tucci, V. Esperto, F. Rubino, and P. Carlone, “Experimental Measurement of the Resistant Load in Injection Pultrusion Processes,” Procedia Manufacturing, vol. 47, pp. 148–153, 2020, doi: 10.1016/j.promfg.2020.04.157.

Conference: CAMX 2023

Publication Date: 2023/10/30

SKU: TP23-0000000095

Pages: 15

Price: $30.00

Get This Paper