Search

DIGITAL LIBRARY: CAMX 2023 | ATLANTA, GA | OCTOBER 30-NOVEMBER 2

Get This Paper

Reactive Polyetherimide Oligomers: Part II. Toughening in carbon fiber reinforced epoxy composites

Description

Title: Reactive Polyetherimide Oligomers: Part II. Toughening in carbon fiber reinforced epoxy composites

Authors: Devendra Bajaj, Hengxi Chen, Dadasaheb Patil, Nikhil Verghese, Hung-Jue Sue

DOI: 10.33599/nasampe/c.23.0104

Abstract: Reactive polyetherimide (rPEI) oligomers have recently been shown to significantly increase the fracture toughness in tetraglycidyl diaminodiphenylmethane (TGDDM) epoxy resin, cured with diamino diphenylsulfone (DDS) [1]. In this work, we studied the toughening effects of two rPEI oligomers (L-rPEI: Mw of 10,000 g mol-1; H-rPEI: Mw of 30,000 g mol-1; at 20 wt% loading) in a matrix comprising a mixture of two epoxies (TGDDM and Triglycidyl aminophenol, TGAP) cured with DDS. We investigated the Mode I fracture toughness at clear casting level, via single-edge-notch three-point-bending (SEN-3PB), as well as composite laminate level [2], via double cantilever beams (DCB). Moreover, the effects of molecular weight of rPEI oligomers on the phase morphology in clear castings and composites were explored via., scanning electron microscopy (SEM). Comparison of critical strain energy release rate (GIC) in clear castings demonstrated significant increase in fracture toughness by 250% (L-rPEI) and 450% (H-rPEI) vs untoughened control (GIC (clear casting) = 64 ± 3.6 J m-2). Similarly, comparison of GIC in composites also demonstrated significant increase in fracture toughness by 120% (L-rPEI) and 150% (H-rPEI) vs untoughened control (GIC (composite) = 210 ± 20 J m-2). Combined, these results demonstrate translation of toughness with rPEI from clear casting to composite level. Further investigation of the fractured surfaces of SENB and DCB specimens via SEM demonstrated a two-phase morphology with submicron scale rPEI particulates in a continuous epoxy matrix, similar to those reported in our previous work on rPEI-toughened TGDDM epoxy [1, 3]. In summary, we demonstrate that incorporation of rPEI not only promotes a better control of phase morphology but also allows the toughness enhancements to translate from resin castings to their corresponding composite laminates.1. Chen, H., Zhu, Z., Patil, D., Bajaj, D., Verghese, N., Jiang, Z., Sue, H. J, Polymer 2023, 270, 1257632. Turmel, D.-P., Partridge, I., Composites science and technology 1997, 57 (8), 1001-1007.3. Bajaj, D., Chen, H., Patil, D., Verghese, N., Sue. H-J. CAMX 2022 Conference, TP22-0000000049.

References: 1. Dransfield, K. A., Jain, L. K., Mai, Y.-W., Composites Science and Technology, 1998, 58 (6), 815-827. 2. Dransfield, K., Baillie, C., Mai, Y.-W., Composites Science and Technology, 1994, 50 (3), 305-317. 3. Shrivastava, R., Singh, K. K., Polymer Reviews, 2019, 60 (3), 542-593. 4. Zhang, W., Deng, X., Sui, G., Yang, X., Carbon, 2019, 145, 629-639. 5. Cheng, C., Zhang, C., Zhou, J., Jiang, M., Sun, Z., Zhou, S., Liu, Y., Chen, Z., Xu, L., Zhang, H., Yu, M., Composites Science and Technology, 2019, 183. 6. White, K. L., Sue, H.-J., Polymer, 2012, 53 (1), 37-42. 7. Cardwell, B.; Yee, A. F., Toughening of epoxies through thermoplastic crack bridging. Journal of materials science 1998, 33 (22), 5473-5484. 8. Zheng, N., Huang, Y., Liu, H.-Y., Gao, J., Mai, Y.-W., Composites Science and Technology, 2017, 140, 8-15. 9. Li, P., Liu, D., Zhu, B., Li, B., Jia, X., Wang, L., Li, G., Yang, X., Composites Part A: Applied Science and Manufacturing, 2015, 68, 72-80. 10. Bibo, G., Hogg, P., Kemp, M., Composites, 1995, 26 (2), 91-102. 11. Im, K.-H., Cha, C.-S., Kim, S.-K., Yang, I.-Y., Composites Part B: Engineering, 2001, 32 (8), 669-682. 12. Prasad, N., Tola, C., Coulaud, M., Claes, M., Lomov, S. V., Verpoest, I., Gorbatikh, L., Advanced Engineering Materials, 2016, 18 (12), 2040-2046. 13. Del Saz-Orozco, B., Ray, D., Kervennic, A., McGrail, P., Stanley, W. F., Materials & Design, 2016, 93, 297-303. 14. Ma, H., Aravand, M. A., Falzon, B. G., Composites Science and Technology, 2021, 201. 15. Ma, H., Aravand, M. A., Falzon, B. G., Polymer, 2019, 179. 16. Ma, H., Aravand, M. A., Falzon, B. G., Composites Science and Technology 2022, 217. 17. Chen, H., Zhu, Z., Patil, D., Bajaj, D., Verghese, N., Jiang, Z., Sue, H.-J., Polymer, 2023, 270. 18. Bajaj, D., Chen, H., Patil, D., Verghese, N., Sue, H.-J., CAMX 2022, Anaheim, CA, 2022 19. ASTM, I., ASTM D5045-99 2007. 20. ASTM, D., 5528-13. Annual book of ASTM standards 2013, 15. 21. Korokhin, R. A., Shapagin, A. V., Solodilov, V. I., Zvereva, U. G., Solomatin, D. V., Gorbatkina, Y. A., Polymer Bulletin 2020, 78 (3), 1573-1584. 22. Kamar, N. T., Drzal, L. T., Lee, A.; Askeland, P., Polymer 2017, 111, 36-47. 23. Rosetti, Y., Alcouffe, P., Pascault, J. P., Gerard, J. F., Lortie, F., Materials (Basel), 2018, 11 (10). 24. Gan, W., Xiong, W., Yu, Y.; Li, S., Journal of Applied Polymer Science, 2009, 114 (5), 3158-3167. 25. Bonnaud, L., Pascault, J., Sautereau, H., Zhao, J., Jia, D., Polymer composites, 2004, 25 (4), 368-374. 26. Chen, H., Bajaj, D., Patil, D., Zhu, Z., Verghese, N., and Sue, H-J, Composites Science and Technology, under review.

Conference: CAMX 2023

Publication Date: 2023/10/30

SKU: TP23-0000000104

Pages: 9

Price: $18.00

Get This Paper Get This Paper