Search

DIGITAL LIBRARY: CAMX 2023 | ATLANTA, GA | OCTOBER 30-NOVEMBER 2

Get This Paper

Influence of Carbon Fibers and Nanomaterials on the Crystallization Behavior and Morphology of High Temperature Thermoplastic Composites

Description

Title: Influence of Carbon Fibers and Nanomaterials on the Crystallization Behavior and Morphology of High Temperature Thermoplastic Composites

Authors: Nicholas Enos, Lina N. Ghanbari, Lisa Klann, Natasja Brown, Dr. Olivia D. McNair, Dr. Jeffrey Wiggins

DOI: 10.33599/nasampe/c.23.0186

Abstract: Recent interest in thermoplastic composites for aerospace applications has been driven by the need for high-volume manufacturing of materials that display excellent mechanical, thermal, and solvent resistive properties. These properties are highly dependent on the crystalline fraction of semi-crystalline polymer matrices, which develops as a result of thermodynamic and kinetic influences. These materials are typically reinforced with carbonaceous additives to enhance mechanical properties, control crystallinity, and increase electrical and thermal conductivity to aid in processing. This work investigates the influence of carbonaceous fibers and additives on the thermal properties, crystallization behavior and morphology of semi-crystalline polymers and their CF composites. Herein, two common high-performance semi-crystalline polymers, polyphenylene sulfide and poly ether ketone ketone, were investigated alongside various carbon fibers and graphene nanoplatelets. According to differential scanning calorimetry characterization, micron-scale carbon fibers hindered PPS crystallization, slow both isothermal and nonisothermal crystallization behavior due to a lack of nucleation acceleration and hindering diffusion of the polymer chains. When added to a PEKK matrix, micron scale carbon fibers acted as nucleation sites, accelerating crystallization kinetics and showing a 50% decrease in isothermal peak crystallization time with minimal influence on melting behavior. Finally, nano-scale graphene platelets led to an even greater acceleration of crystallization in PEKK composites.

References: [1] A.B. Strong, Fundamentals of Composite Manufacturing Materials, Methods and Applications, Second, Society of Manufacturing Engineers, Dearborn, Michigan, n.d. [2] Solvay Composite Materials, Composite and specialty materials for Urban Air Mobility., (2020). https://www.solvay.com/ (accessed January 9, 2022). [3] D.J. Kemmish, D.C. Leach, POLY(ARYL ETHER KETONE) MATRIX RESINS AND COMPOSITES, (n.d.) 20. [4] A.S. Rahate, K.R. Nemade, S.A. Waghuley, Polyphenylene sulfide (PPS): state of the art and applications, Rev. Chem. Eng. 29 (2013). https://doi.org/10.1515/revce-2012-0021. [5] P. Zuo, A. Tcharkhtchi, M. Shirinbayan, J. Fitoussi, F. Bakir, Overall Investigation of Poly (Phenylene Sulfide) from Synthesis and Process to Applications—A Review, Macromol. Mater. Eng. 304 (2019) 1800686. https://doi.org/10.1002/mame.201800686. [6] P. Liu, R.B. Dinwiddie, J.K. Keum, R.K. Vasudevan, S. Jesse, N.A. Nguyen, J.M. Lindahl, V. Kunc, Rheology, crystal structure, and nanomechanical properties in large-scale additive manufacturing of polyphenylene sulfide/carbon fiber composites, Compos. Sci. Technol. 168 (2018) 263–271. https://doi.org/10.1016/j.compscitech.2018.09.010. [7] Y. Furushima, M. Nakada, Y. Yoshida, K. Okada, Crystallization/Melting Kinetics and Morphological Analysis of Polyphenylene Sulfide, Macromol. Chem. Phys. 219 (2018) 1700481. https://doi.org/10.1002/macp.201700481. [8] I. Taketa, G. Kalinka, L. Gorbatikh, S.V. Lomov, I. Verpoest, Influence of cooling rate on the properties of carbon fiber unidirectional composites with polypropylene, polyamide 6, and polyphenylene sulfide matrices, Adv. Compos. Mater. 29 (2020) 101–113. https://doi.org/10.1080/09243046.2019.1651083. [9] C.M. Stokes-Griffin, P. Compston, The effect of processing temperature and placement rate on the short beam strength of carbon fibre–PEEK manufactured using a laser tape placement process, Compos. Part Appl. Sci. Manuf. 78 (2015) 274–283. https://doi.org/10.1016/j.compositesa.2015.08.008. [10] U.W. Gedde, M.S. Hedenqvist, Crystallization Kinetics, in: U.W. Gedde, M.S. Hedenqvist (Eds.), Fundam. Polym. Sci., Springer International Publishing, Cham, 2019: pp. 327–386. https://doi.org/10.1007/978-3-030-29794-7_8. [11] J. Xu, G. Reiter, R. Alamo, Concepts of Nucleation in Polymer Crystallization, Crystals. 11 (2021) 304. https://doi.org/10.3390/cryst11030304. [12] H. Pérez-Martín, P. Mackenzie, A. Baidak, C.M. Ó Brádaigh, D. Ray, Crystallisation behaviour and morphological studies of PEKK and carbon fibre/PEKK composites, Compos. Part Appl. Sci. Manuf. 159 (2022) 106992. https://doi.org/10.1016/j.compositesa.2022.106992. [13] D.G. Brady, The crystallinity of poly(phenylene sulfide) and its effect on polymer properties, J. Appl. Polym. Sci. 20 (1976) 2541–2551. https://doi.org/10.1002/app.1976.070200921. [14] G.P. Desio, L. Rebenfeld, Effects of fibers on the crystallization of poly(phenylene sulfide), J. Appl. Polym. Sci. 39 (1990) 825–835. https://doi.org/10.1002/app.1990.070390405. [15] S. Zhang, Z. Wang, B. Guo, J. Xu, Secondary nucleation in polymer crystallization: A kinetic view, Polym. Cryst. 4 (2021) e10173. https://doi.org/10.1002/pcr2.10173. [16] X. Tang, W. Chen, L. Li, The Tough Journey of Polymer Crystallization: Battling with Chain Flexibility and Connectivity, Macromolecules. 52 (2019) 3575–3591. https://doi.org/10.1021/acs.macromol.8b02725. [17] S. Andjelić, R.C. Scogna, Polymer crystallization rate challenges: The art of chemistry and processing, J. Appl. Polym. Sci. 132 (2015). https://doi.org/10.1002/app.42066. [18] Y. Furushima, M. Nakada, Y. Yoshida, K. Okada, Crystallization/Melting Kinetics and Morphological Analysis of Polyphenylene Sulfide, Macromol. Chem. Phys. 219 (2018) 1700481. https://doi.org/10.1002/macp.201700481. [19] H. Pérez-Martín, P. Mackenzie, A. Baidak, C.M. Ó Brádaigh, D. Ray, Crystallinity studies of PEKK and carbon fibre/PEKK composites: A review, Compos. Part B Eng. 223 (2021) 109127. https://doi.org/10.1016/j.compositesb.2021.109127. [20] J.P. Jog, Crystallisation in polymer nanocomposites, Mater. Sci. Technol. 22 (2006) 797–806. https://doi.org/10.1179/174328406X101300.

Conference: CAMX 2023

Publication Date: 2023/10/30

SKU: TP23-0000000186

Pages: 15

Price: $30.00

Get This Paper