Title: Revolutionizing Molding Accuracy for Aviation and Urban Air Mobility: The Power of Low Thermal Expansion Tooling in CFRTP Compression Molding
Authors: Hiromichi T. Fujii, Haruyasu Ohno, Naoki Sakaguchi, Shingo Matsumura, Kotaro Ona, Junichi Go, Umito Yoshioka
DOI: 10.33599/nasampe/c.24.0237
Abstract: Unidirectional and woven carbon fibers prepregs using four types of thermoplastic resins with different molding temperatures were prepared for the compression molding tests. The resins used in prepregs were PP, PA6, PPS and PEEK, and forming was conducted at 200ºC, 260ºC, 350ºC and 400ºC, respectively. A tooling used for compression molding was made of a low thermal expansion (LTE) alloy (Fe-Ni-Co based alloy), and for comparison, a tooling made of a typical tool steel for plastic molding was also prepared. The shape accuracy of the plate specimens was assessed using 3D shape measurement equipment. The use of LTE tooling was found to significantly enhance the shape accuracy of press-formed CFRTP plates. In particular, the flatness of the PEEK plate, estimated from the ratio between the maximum height and the diagonal length of a rectangle specimen, prepared with LTE tooling was 0.040%, a significant improvement over the 0.60% achieved with typical tooling. Furthermore, the use of LTE tooling also led to a significant improvement in the distortion of the intended shape. The flexural strength of PPS specimens with woven carbon fibers improved by approximately 12% when using LTE tooling, although the mechanical properties of most CFRTP test specimens remained unchanged compared to typical tooling. These significant enhancements in both dimensional accuracy and flexural strength highlight the potential benefits of LTE tooling for specific applications.
References: [1] S.A. Rizzi, D.L. Huff, D.D. Boyd, Jr., P. Bent, B.S. Henderson, K.A. Pascioni, D.C. Sargent, D.L. Josephson, M. Marsan, H. He and R. Snider, “Urban air mobility noise: Current practice, gaps, and recommendations”, NASA Technical Reports, TP-2020-5007433 (2020). https://ntrs.nasa.gov/citations/20205007433 [2] A. Bauranov and J. Rakas, “Designing airspace for urban air mobility: A review of concepts and approaches”, Prog. Aero. Sci., 125 (2021), 100726 (27 pages). DOI: https://doi.org/10.1016/j.paerosci.2021.100726 [3] Y. Lu, Y. Li, N. Li and X. Wu, “Reduction of composite deformation based on tool-part thermal expansion matching and stress-free temperature theory”, Int. J. Adv. Manuf. Technol., 88 (2017), 1703-1710. DOI: https://doi.org/10.1007/s00170-016-8862-3 [4] H.T. Fujii, N. Sakaguchi, H. Ohno, K. Ona, “Development of novel tooling materials for next generation air mobility components with intricate structure”, CAMX Virtual Conf. Proc., (2020), TP20-0000000062 (14 pages). https://www.nasampe.org/store/viewproduct.aspx?id=17609307 [5] H.T. Fujii, N. Sakaguchi, H. Ohno and K. Ona, “Novel tooling materials with extremely high dimensional stability for press forming of CFRTP”, CAMX Proc., (2021), TP21- 0000000295 (14 pages). https://www.nasampe.org/store/viewproduct.aspx?id=19516170 [6] Z.H. Karadeniz and D. Kumlutas, “A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials”, Composites Structures, 78 (2007), 1-10. DOI: https://doi.org/10.1016/j.compstruct.2005.11.034 [7] C. Dong, K. Li, Y. Jiang, D. Arola and D. Zhang, “Evaluation of thermal expansion coefficient of carbon fiber reinforced composites using electronic speckle interferometry”, Optics Express, 26 (2018), 531-543. DOI: https://doi.org/10.1364/OE.26.000531 [8] S. Chikazumi, “Invar anomalies”, J. Mag. Mag. Mater., 10 (1979), 113-119. DOI: https://doi.org/10.1016/0304-8853(79)90161-6 [9] E.G. Moroni and T. Jarborg, “Calculation of Invar anomalies”, Phys. Rev. B, 41 (1990), 9600-9602. DOI: https://doi.org/10.1103/PhysRevB.41.9600 [10] T. Yokoyama and K. Eguchi, “Anharmonicity and quantum effects in thermal expansion of an Invar alloy”, Phys. Rev. Lett., 107 (2011), 065901 (4 pages). [11] E.C. Botelho, L. Figiel, M.C. Rezende and B. Lauke, “Mechanical behavior of carbon fiber reinforced polymide composites”, Compos. Sci. Technol., 63 (2003), 1843-1855. DOI: https://doi.org/10.1016/S0266-3538(03)00119-2 [12] K. Fujihara, Z.-M. Huang, S. Ra,akrishna and H. Hamada, “Influence of processing conditions on bending property of continuous carbon fiber reinforced PEEK composites”, Comp. Sci. Technol., 64 (2004), 2525-2534. DOI: https://doi.org/10.1016/j.compscitech.2004.05.014 [13] K.H. Maris, “Fe-Ni-Co alloys for glass to metal seals”, JOM, 4 (1952), 460-464. DOI: https://doi.org/10.1007/BF03397710 [14] G.J. Qiao, C.G. Zhang and Z.H. Jin, “Thermal cyclic of alumina/kovar joint brazed by Ni-Ti active filler”, Ceramics Intern., 29 (2003), 7-11. DOI: https://doi.org/10.1016/S0272-8842(02)00081-0 [15] D. Lei, Z. Wang, J. Li, J. Li and Z. Wang, “Experimental study of glass to metal seals for parabolic trough receivers”, Renew. Energy, 48 (2012), 85-91. DOI: https://doi.org/10.1016/j.renene.2012.04.033 [16] K. Tanaka, T. Yamada, K. Moriito and T. Katayama, “The effect of molding pressure on the mechanical properties of CFRTP using paper-type intermediate material”, WIT Trans. Built Environ., 166 (2016), 307-315. DOI: https:://doi.org/10.2495/HPSM160281 [17] K. Tanaka, Y. Kondo and T. Katayama, “Effect of mold temperature on interfacial welded strength and outer shell laminate strength of CF/PA6 composites manufactured by press and injection hybrid molding”, WIT Trans. Built Environ., 166 (2016), 317-327. DOI: https://doi.org/10.2495/HPSM160291 [18] D. Tatsuno, T. Yoneyama, K. Kawamoto and M. Okamoto, “Effect of cooling rate on the mechanical strength of carbon fiber-reinforced thermoplastic sheets in press forming”, J. Mater. Eng. Perform., 26 (2017), 3482-3488. DOI: https:://doi.org/ 10.1007/s11665-017-2664-0 [19] J. Zhang and J. Yanagimoto, “Design and fabrication of formable CFRTP core sandwich sheets”, CIRP Annals – Manufact. Technol., 68 (2019), 281-284. DOI: https://doi.org/10.1016/j.cirp.2019.04.060 [20] D. Tatsuno, T. Yoneyama, S. Hineno, M. Kimura, K. Shiozaki, K. Kawamoto and M. Okamoto, “Investigation of deformation behavior in press forming of saddle shape U beam using CFRTP laminate and shear cutting behavior”, Proc. 20th Intern. Corf. Compos. Mater., (2015). [21] A. Itami, K. Obunai, K. Okubo and H. Takei, “Effect of heating process on flexural strength and toughness of CFRTP molded by multi-layer press -Investigation on effect of residual stress-“, Mater. Sci. Eng., 859 (2020), 012015-1-6. DOI: https://doi.org/10.1088/1757-899X/859/1/012015 [22] T. Yoneyama, D. Tatsuno, K. Kawamoto and M. Okamoto, “Effect of press slide speed and stroke on cup forming using a plain-woven carbon fiber thermoplastic composite sheet”, Int. J. Autom. Technol., 10 (2016), 381-391. DOI: https://doi.org/10.20965/ijat.2016.p0381 [23] D. Tatsuno, T. Yoneyama, K. Kawamoto and M. Okamoto, “Production system to form, cut, and join by using a press machine for continuous carbon fiber-reinforced thermoplastic sheets” Polym. Compos., 39 (2018), 2571-2586. DOI: https://doi.org/10.1002/pc.24242 [24] J.-M. Lee, C.-J. Lee, B.-M. Kim and D.-C Ko, “Design of prepreg compression molding for manufacturing of CFRTP B-pillar reinforcement with equivalent mechanical properties to existing steel part”, Intern. J. Prec. Eng. Manufact., 21 (2020), 545-556. DOI: https://doi.org/10.1007/s12541-019-00265-z [25] J.-H. Kim, Y.-H Jung, F. Lambiase, Y.-H. Moon and D.-C. Ko, “Novel approach toward the forming process of CFRP reinforcement with a hot stamped part by prepreg compression molding”, Materials, 15 (2022), 4743 (14 pages). DOI: https://doi.org/10.3390/ma15144743 [26] ASTM International, Standard Test Mechods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials (2007). [27] C. Dong, Sudarisman and I.J. Davies, “Flexural properties of E glass and TR50S carbon fiber reinforced epoxy hybrid composites”, J. Mater. Eng. Perform., 22 (2013), 41-49. DOI: https://doi.org/10.1007/s11665-012-0247-7 [28] K. Gawdzińska, P. Szymański, K. Bryll, P. Pawłowska and M. Pijanowski, “Flexural strength of hybrid epoxy composites with carbon fiber” Compos. Theory Proct., 17 (2017), 47-50. [29] R. Stewart, “New mould technologies and tooling materials promise advances for composites”, Reinforced Plastics, 54 (2010), 30-36. DOI: https://doi.org/10.1016/S0034-3617(10)70110-7 [30] H. Awaki, N. Kametani, R. Imamura, M. Isahida, M. Iwasaki, K. Kodani, Y. Maeda, H. Matsumoto, K. Mori, K. Nakazawa, T. Ozaki, H. Suzuki, H. Takahashi, T. Tsuru and S. Utunomiya, “ Current status of development of light weight X-ray mirror with carbon fiber reinforced plastic (CFRP)”, Proc. SPIE, 12181 (2022), 121814R (8 pages). DOI: https://doi.org/10.1117/12.2629705 [31] S. Utsunomiya, T. Ozaki, M. Ide, Y. Yamagata, H. Saito and T. Kageyama, “The improved replication technique to fabricate ultra-light CFRP mirrors for space telescopes”, Proc. SPIE, 12180 (2022), 121802D (7 pages). DOI: https://doi.org/10.1117/12.2629063 [32] K. Matsushita, T. Furushima, K. Tada and K. Manabe, “Spring-in behavior of crystalline CFRTP sheet after thermal U-bending”, Proc. Eng., 184 (2017), 560-566. DOI: https://doi.org/10.1016/j.proeng.2017.04.136 [33] M. Zekaria, Y. Aminanda, S.A. Rashidi and M.A. Mat Sah, “Spring-back of thick uni-directional carbon fibre reinforced composite laminate for aircraft structure application”, J. Phys.: Conf. Ser., 1005 (2018), 012003 (7 pages). DOI: https://doi.org/10.1088/1742-6596/1005/1/012003 [34] S. Kazano, T. Osada, S. Kobayashi and K. Goto, “Experimental and analytical investigation on resin impregnation behavior in continuous carbon fiber reinforced thermoplastic polyimide composites”, Mech. Adv. Mater. Modern Process., 4 (2018), 6 (13 pages). DOI: https://doi.org/10.1186/s40759-018-0039-3 [35] E.C. Botelho, Ł. Figiel, M.C. Rezende and B. Lauke, “Mechanical behavior of carbon fiber reinforced polyamide composites”, Compos. Sci. Technol., 63 (2003), 1843-1855. DOI: https://doi.org/10.1016/S0266-3538(03)00119-2 [36] A.S. Mahmood, J. Summerscales and M.N. James, “Resin-rich volumes (RRV) and the performance of fiber-reinforced composites: A review”, J. Compos. Sci., 6 (2022), 53 (16 pages). DOI: https://doi.org/10.3390/jcs6020053 [37] Y. Fu and X. Yao, “A review on manufacturing defects and their detection of fiber reinforced resin matrix composites”, Compos. Part C, 8 (2022), 100276 (24 pages). DOI: https://doi.org/10.1016/j.jcomc.2022.100276 [38] H. Ahmadian, M. Yang and S. Soghrati, “Effect of resin-rich zones on the failure response of carbon fiber reinforced polymers”, Intern. J. Solids Struct., 188-189 (2020), 74-87. DOI: https://doi.org/10.1016/j.ijsolstr.2019.10.004
Conference: CAMX 2024 | San Diego CA
Publication Date: 2024/9/9
SKU: TP24-0000000237
Pages: 19
Price: $38.00
Get This Paper