Title: Novel Field-Manufacturing Methods for Long-Fiber Thermoplastic Composites
Authors: James C. Haller, Jr., Jacob C. Clark, James T. Gayton, Michael S. Hunter, Andrew P. Schanck, Cody A. Sheltra, William G. Davids, Roberto A. Lopez-Anido, and Justin L. Lapp
DOI: 10.33599/nasampe/c.24.0263
Abstract: Continuous fiber reinforced thermoplastics (CFRTPs) are valued for their high strength-to-weight ratios, corrosion resistance, and recyclability over traditional structural materials. However, CFRTPs are difficult to fabricate compared to thermoset composites, a significant barrier to their adoption in construction and infrastructure. The University of Maine’s Advanced Structures and Composites Center has developed several innovative manufacturing and post-processing techniques to address fabrication challenges. The Continuous Forming Machine (CFM) is a processing device for non-reactive thermoplastic pultrusion, efficiently producing structural profiles like rods, plates, and channels. The CFM platform can be expanded with co-processes to create parts such as field-bendable concrete reinforcing bar. Further, effective post-forming processes will be crucial for adapting CFRTP components to on-site infrastructure applications. Localized thermoforming targets specific bending regions within a CFRTP component, offering a field-friendly approach over stamp thermoforming. Using localized heating methods, such as embedded heating elements, CFRTP panels can be locally thermoformed into three-dimensional components. Additional work has been performed to mitigate wrinkle formation in the bending of thick-gauge CFRTP laminates by implementing modifications to component architecture. This research presents significant advancements towards the widespread adoption of CFRTPs for infrastructure, demonstrating the technology's adaptability for onsite manufacturing and its future impact on sustainable construction practices.
References: [1] Nanni, Antonio. “North American design guidelines for concrete reinforcement and strengthening using FRP: principles, applications, and unresolved issues.” Construction and Building Materials 17 (2003): 439-446. DOI: 10.1016/S0950-0618(03)00042-4 [2] Benmokrane, B., El-Salakawy, E., El-Ragaby, A., & Lackey, T. “Designing and testing of concrete bridge decks reinforced with glass FRP bars.” Journal of Bridge Engineering 11(2) (2006): 217-229. DOI: 10.1061/(ASCE)1084-0702(2006)11:2(217) [3] AASHTO LRFD Bridge Design Guide Specification for GFRP Reinforced Concrete, 1st ed., 2018. AASHTO, Washington, D.C, 2018. [4] ACI Committee 440. “Guide for the design and construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars,” American Concrete Institute (ACI), Farmington Hills, MI, 2015. [5] Teng, J. G., Yu, T., & Fernando, D. “Strengthening of steel structures with fiber-reinforced polymer composites.” Journal of Constructional Steel Research 78 (2012): 131-143. DOI: 10.1016/j.jcsr.2012.06.011 [6] Ekenel, M., Rizzo, A., Myers, J. J., & Nanni, A. “Flexural fatigue behavior of reinforced concrete beams strengthened with FRP fabric and precured laminate systems.” Journal of Composites for Construction 10(5) (2006): 433-442. DOI: 10.1061/(ASCE)1090-0268(2006)10:5(433) [7] Dagher, H. J., Bannon, D. J., Davids, W. G., Lopez-Anido, R. A., Nagy, E., & Goslin, K. “Bending behavior of concrete-filled tubular FRP arches for bridge structures.” Construction and Building Materials 37 (2012): 432-439. DOI: 10.1016/j.conbuildmat.2012.07.067 [8] Walton, H. J., Davids, W. G., Landon, M. E., & Clapp, J. D. “Simulation of buried arch bridge response to backfilling and live loading.” Journal of Bridge Engineering 21(9) (2016): 04016052. DOI: 10.1061/(ASCE)BE.1943-5592.0000893 [9] Bank, L. C., Gentry, T. R., Nuss, K. H., Hurd, S. H., Lamanna, A. J., Duich, S. J, & Oh, B. “Construction of a pultruded composite structure: Case study.” Journal of Composites for Construction 4(3) (2000): 112-119. DOI: 10.1061/(ASCE)1090-0268(2000)4:3(112) [10] Gutiérrez, E., Primi, S. Mieres, J. M., & Calvo, I. “Structural testing of a vehicular carbon fiber bridge: Quasi-static and short-term behavior.” Journal of Bridge Engineering 13(3) (2008): 271-281. DOI: 10.1061/(ASCE)1084-0702(2008)13:3(271) [11] Davids, W. G., Diba, A., Dagher, H. J., Guzzi, D., & Schanck, A. P. “Development, assessment and implementation of a novel FRP composite girder bridge.” Construction and Building Materials 340 (2022): 127818. DOI: 10.1016/j.conbuildmat.2022.127818 [12] Pinkham, J., Davids, W. G., & Schanck, A. “Assessment of moment live load distribution in FRP composite tub girders for highway bridges.” Journal of Bridge Engineering 29(5) (2024): 04024024. DOI: 10.1061/JBENF2.BEENG-6671 [13] Diniță, A., Ripeanu, R. G., Ilincă, C. N., Cursaru, D., Matei, D., Naim, R. I., Tănase, M., & Portoacă, A. I. “Advancements in Fiber-Reinforced Polymer Composites: A Comprehensive Analysis.” Polymers 16(2) (2024). DOI: 10.3390/polym16010002 [14] Zoller, A., Escalé, P., & Gérard, P. “Pultrusion of Bendable Continuous Fibers Reinforced Composites With Reactive Acrylic Thermoplastic ELIUM® Resin.” Journal of Frontiers in Materials 6 (2019): 290. DOI: 10.3389/fmats.2019.00290 [15] Epple, S., & Bonten, C. “Production of continuous fiber thermoplastic composites by in-situ pultrusion.” Proceedings of PPS-29: The 29th International Conference of the Polymer Processing Society. Nuremberg, Germany, July 15-19, 2013. Polymer Processing Society. AIP Publishing LLC. DOI: 10.1063/1.4873820 [16] Udipi, K., Dave, R. S., Kruse, R. L., & Stebbins, L. R. “Anionic Polymerization of Lactams: Some Industrial Applications.” Applications of Anionic Polymerization Research. Ed. Quirk, R. P. Vol. 696. Washington, DC: American Chemical Society, 1998. DOI: 10.1021/bk-1998-0696.ch019 [17] D’Antino, T., & Pisani, M. A. “Tensile and compressive behavior of thermoset and thermoplastic GFRP bar.” Construction and Building Materials 366 (2023): 130104. DOI: 10.1016/j.conbuildmat.2022.130104 [18] Vaidya, U. K., & Chawla, K. K. “Processing of fibre reinforced thermoplastic composites.” International Materials Reviews 53(4) (2008): 185-218. DOI: 10.1179/174328008X325223 [19] Khurshid, M. F., Hengstermann, M., Mohammad, M., Hasan, B., Abdkader, A., & Cherif, C. “Recent developments in the processing of waste carbon fibre for thermoplastic composites – A review.” Journal of Composite Materials 54(14) (2020): 1925-1944. DOI: 10.1177/0021998319886043 [20] Gayton, J. T., Davids, W. G., Haller, Jr., J. C., Duffy, J., Sheltra, C., Lopez-Anido, R. A., Dagher, H. J., & Lapp, J. L. “Heating of thick continuous glass fiber reinforced thermoplastic plates via embedded metal mesh networks.” Journal of Composite Materials 57(19) (2023): 3045-3064. DOI: 10.1177/00219983231182198 [21] Tatsuno, D., Yoneyama, T., & Matsumoto, T. “Local heat clamp bending of carbon fiber-reinforced thermoplastic sheet.” The International Journal of Advanced Manufacturing Technology 111 (2020): 1517-1533. DOI: 10.1007/s00170-020-06216-7 [22] Haas, J., & Bose, B. “Formed Pultrusion Profiles: Wrinkle-Free Forming of Pultruded Hollow Profiles by Local Stretch Bending.” Pultrusion, Kunststoffe International, 2020: 40-43. [23] Martin, T. A., Bhattacharyya, D., & Collins, I. F. “Bending of fibre-reinforced thermoplastic sheets.” Composites Manufacturing 6(3-4) (1995): 177-187. DOI: 10.1016/0956-7143(95)95009-N [24] Kabala, P., Middelhoff, J., Voigt, D., Dröder, K., & Hürkamp, A. “Comparison of modelling approaches for the bending behaviour of fibre-reinforced thermoplastics in finite element forming analyses.” Proceedings in Applied Mathematics and Mechanics 23(4) (2023). DOI: 10.1002/pamm.202300257 [25] Weidmann, S., Volk, P., Mitschang, P., & Markaide, N. “Investigations on thermoforming of carbon fiber reinforced epoxy vitrimer composites.” Composites Part A: Applied Science and Manufacturing (154) (2022): 106791. DOI: 10.1016/j.compositesa.2021.106791 [26] Sjölander, J., Hallander, P., & Åkermo, M. “Forming induced wrinkling of composite laminates: A numerical study on wrinkling mechanisms.” Composites Part A: Applied Science and Manufacturing (81) (2016): 41-51. DOI: 10.1016/j.compositesa.2015.10.012 [27] ISO 6935-2:2015(E), “Steel for the reinforcement of concrete — Part 2: Ribbed bars” ISO, Vernier, Switzerland, 2015. [28] Imjai, T., Garcia, R., Guadagnini, M., & Pilakoutas, K. “Strength Degradation in Curved Fiber-reinforced Polymer (FRP) Bars Used as Concrete Reinforcement.” Polymers 12(8) (2020): 1653. DOI: 10.3390/polym12081653 [29] ASTM Standard D7205/D7205M-21, 2021, “Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars” ASTM International, West Conshohocken, PA, 2021, DOI: 10.1520/D7205_D7205M-21, www.astm.org. [30] ASTM Standard D7913/D7913M-14, 2020, “Standard Test Method for Bond Strength of Fiber-Reinforced Polymer Matrix Composite Bars to Concrete by Pullout Testing” ASTM International, West Conshohocken, PA, 2020, DOI: 10.1520/D7913_D7913M-14R20, www.astm.org. [31] ASTM Standard D7957/D7957M-22, 2022, “Standard Specification for Solid Round Glass Fiber Reinforced Polymer Bars for Concrete Reinforcement” ASTM International, West Conshohocken, PA, 2022, DOI: 10.1520/D7957_D7957M-22, www.astm.org.
Conference: CAMX 2024 | San Diego CA
Publication Date: 2024/9/9
SKU: TP24-0000000263
Pages: 15
Price: $30.00
Get This Paper