DIGITAL LIBRARY: CAMX 2024 | SAN DIEGO, CA | SEPTEMBER 9-12

Get This Paper

The Effect of a Dip/Spin-Coating Method on the Physico-Mechanical Properties of TiO2-Grafted Flax-Reinforced Poly (Lactic Acid) Composites

Description

Title: The Effect of a Dip/Spin-Coating Method on the Physico-Mechanical Properties of TiO2-Grafted Flax-Reinforced Poly (Lactic Acid) Composites

Authors: Fatemeh Rahimi, M. Reza Foruzanmehr, Mathieu Robert

DOI: 10.33599/nasampe/c.24.0279

Abstract: Natural fibers, with their superior properties, specifically as renewable materials, are good competitors for petroleum-based reinforcements in the polymer composite industry. This study aims to enhance the properties of flax natural fiber by creating a thin layer of TiO2 using dip/spin coating methodology. Applying TiO2 helps to enhance the strength of the interface between natural fiber and polymer matrix, and forming a thin coated layer brings the opportunity to improve the performance of film. For this aim, flax fabric was coated at a spin speed of 3000 rpm. Then composite was manufactured by hot-press molding. One composite was also prepared using raw fabric as a reference. Scanning electron microscopy was carried out to investigate the morphology and dispersion of coating on the fabric surface, and the quality of adhesion between fabric and matrix. Results clearly depicted better adhesion was reached after modification. This data was supported by a tensile test. Where composite prepared with coated fabric reached better tensile strength. In this research, using the dip/spin coating technique controlled the thickness of TiO2 film allowing the decrease in water uptake capacity of the fibers. Finally, thermal gravimetry analysis showed an improvement in the sample thermal resistance as compared to the reference.

References: [1] A. Mehmood, N. Raina, V. Phakeenuya, B. Wonganu, and K. Cheenkachorn, The Current Status and Market Trend of Polylactic Acid as Biopolymer: Awareness and Needs for Sustainable Development, Mater Today Proc, vol. 72, pp. 3049–3055, Jan. 2023, doi: 10.1016/j.matpr.2022.08.387. [2] D. Qualman, Global Plastics Production, 1917 to 2050. [3] R. Siakeng, M. Jawaid, H. Ariffin, S. M. Sapuan, M. Asim, and N. Saba, Natural Fiber Reinforced Polylactic Acid Composites: A Review, Polymer Composites, vol. 40, no. 2. John Wiley and Sons Inc., pp. 446–463, Feb. 01, 2019. doi: 10.1002/pc.24747. [4] K. Malik et al., A Review of Flax Fiber Reinforced Thermoset Polymer Composites: Structure and Mechanical Performance, Journal of Natural Fibers, vol. 19, no. 14. Taylor and Francis Ltd., pp. 9656–9680, 2022. doi: 10.1080/15440478.2021.1990182. [5] K. Malik et al., A Review of Flax Fiber Reinforced Thermoset Polymer Composites: Thermal-Physical Properties, Improvements and Application, Journal of Natural Fibers, vol. 19, no. 15. Taylor and Francis Ltd., pp. 10412–10430, 2022. doi: 10.1080/15440478.2021.1993507. [6] A. Lotfi, H. Li, D. V. Dao, and G. Prusty, Natural Fiber–Reinforced Composites: A Review on Material, Manufacturing, and Machinability, Journal of Thermoplastic Composite Materials, vol. 34, no. 2. SAGE Publications Ltd, pp. 238–284, Feb. 01, 2021. doi: 10.1177/0892705719844546. [7] M. J. John and R. D. Anandjiwala, Recent Developments in Chemical Modification and Characterization of Natural Fiber-Reinforced Composites, Polymer Composites, vol. 29, no. 2. pp. 187–207, Feb. 2008. doi: 10.1002/pc.20461. [8] O. Faruk, A. K. Bledzki, H. P. Fink, and M. Sain, Biocomposites Reinforced with Natural Fibers: 2000-2010, Progress in Polymer Science, vol. 37, no. 11. pp. 1552–1596, Nov. 2012. doi: 10.1016/j.progpolymsci.2012.04.003. [9] A. Gholampour and T. Ozbakkaloglu, A Review of Natural Fiber Composites: Properties, Modification and Processing Techniques, Characterization, Applications, Journal of Materials Science, vol. 55, no. 3. Springer New York LLC, pp. 829–892, Jan. 01, 2020. doi: 10.1007/s10853-019-03990-y. [10] Natural and Artificial Fiber-Reinforced Composites as Renewable Sources. InTech, 2018. doi: 10.5772/intechopen.68740. [11] Z. Liu, S. Z. Erhan, D. E. Akin, and F. E. Barton, Green Composites from Renewable Resources: Preparation of Epoxidized Soybean Oil and Flax Fiber Composites, J Agric Food Chem, vol. 54, no. 6, pp. 2134–2137, Mar. 2006, doi: 10.1021/jf0526745. [12] M. J. John and R. D. Anandjiwala, Recent Developments in Chemical Modification and Characterization of Natural Fiber-Reinforced Composites, Polymer Composites, vol. 29, no. 2. pp. 187–207, Feb. 2008. doi: 10.1002/pc.20461. [13] X. Li, L. G. Tabil, and S. Panigrahi, Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review, Journal of Polymers and the Environment, vol. 15, no. 1. pp. 25–33, Jan. 2007. doi: 10.1007/s10924-006-0042-3. [14] S. Alsubari, M. Y. M. Zuhri, S. M. Sapuan, M. R. Ishak, R. A. Ilyas, and M. R. M. Asyraf, Potential of Natural Fiber Reinforced Polymer Composites in Sandwich Structures: A Review On Its Mechanical Properties, Polymers, vol. 13, no. 3. MDPI AG, pp. 1–20, Feb. 01, 2021. doi: 10.3390/polym13030423. [15] Mr. Foruzanmehr, P. Y. Vuillaume, M. Robert, and S. Elkoun, The Effect of Grafting a Nano-TiO2 Thin Film on Physical and Mechanical Properties of Cellulosic Natural Fibers, Mater Des, vol. 85, pp. 671–678, Nov. 2015, doi: 10.1016/j.matdes.2015.06.105. [16] M. Bayart, F. Gauvin, M. R. Foruzanmehr, S. Elkoun, and M. Robert, Mechanical and Moisture Absorption Characterization of PLA Composites Reinforced with Nano-Coated Flax Fibers, Fibers and Polymers, vol. 18, no. 7, pp. 1288–1295, Jul. 2017, doi: 10.1007/s12221-017-7123-x. [17] M. R. Foruzanmehr, L. Boulos, P. Y. Vuillaume, S. Elkoun, and M. Robert, The Effect of Cellulose Oxidation on Interfacial Bonding of Nano-TiO2 Coating to Flax Fibers, Cellulose, vol. 24, no. 3, pp. 1529–1542, Mar. 2017, doi: 10.1007/s10570-016-1185-6. [18] X. Wang, F. Shi, X. Gao, C. Fan, W. Huang, and X. Feng, A Sol-Gel Dip/Spin Coating Method to Prepare Titanium Oxide Films, Thin Solid Films, vol. 548, pp. 34–39, Dec. 2013, doi: 10.1016/j.tsf.2013.08.056. [19] X. Tang and X. Yan, Dip-Coating for Fibrous Materials: Mechanism, Methods and Applications, Journal of Sol-Gel Science and Technology, vol. 81, no. 2. Springer New York LLC, pp. 378–404, Feb. 01, 2017. doi: 10.1007/s10971-016-4197-7. [20] S. L. University of Moratuwa, S. Lanka. E. R. U. University of Moratuwa, Institute of Electrical and Electronics Engineers. University of Moratuwa Student Branch, Institute of Electrical and Electronics Engineers, and IEEE Sri Lanka Section, MERCon 2020 : Moratuwa Engineering Research Conference : 6th International Moratuwa Engineering Research Conference : conference proceedings : 27th, 28th and 30th July 2020, University of Moratuwa, Sri Lanka. [21] A. G. Emslie, F. T. Bonner, and L. G. Peck, Flow of A Viscous Liquid on A Rotating Disk, J Appl Phys, vol. 29, no. 5, pp. 858–862, 1958, doi: 10.1063/1.1723300. [22] U. G. Lee, W. B. Kim, D. H. Han, and H. S. Chung, A Modified Equation for Thickness of the Film Fabricated by Spin Coating, Symmetry (Basel), vol. 11, no. 9, pp. 1–20, Sep. 2019, doi: 10.3390/sym11091183. [23] M. Shaban, F. Mohamed, and S. Abdallah, Production and Characterization of Superhydrophobic and Antibacterial Coated Fabrics Utilizing ZnO Nanocatalyst, Sci Rep, vol. 8, no. 1, Dec. 2018, doi: 10.1038/s41598-018-22324-7. [24] J. Teknologi, Y. Rilda, A. Alif, H. Aziz, S. Chandren, and H. Nur, Self-cleaning TiO2-SiO2 Clusters on Cotton Textile Prepared by Dip-Spin Coating Process, 2016. [Online]. Available: www.jurnalteknologi.utm.my [25] M. A. Herrera, J. A. Sirviö, A. P. Mathew, and K. Oksman, Environmental Friendly and Sustainable Gas Barrier on Porous Materials: Nanocellulose Coatings Prepared Using Spin- and Dip-Coating, Mater Des, vol. 93, pp. 19–25, Mar. 2016, doi: 10.1016/j.matdes.2015.12.127. [26] J. D. Le Roux and D. R. Paul, Preparation of Composite Membranes by A Spin Coating Process, 1992. [27] K. Arcaute Cantu, R. Wicker, R. Quintana, C. W. Dirk, and C. H. Ambler, Complex Silicone Cardiovascular Models Manufactured Using a Dip-Spin Coating Technique and Water-Soluble Molds, Thesis, The University of Texas, 2004. [28] J. Karger-Kocsis, H. Mahmood, and A. Pegoretti, Recent Advances in Fiber/Matrix Interphase Engineering for Polymer Composites, Progress in Materials Science, vol. 73. Elsevier Ltd, pp. 1–43, Aug. 01, 2015. doi: 10.1016/j.pmatsci.2015.02.003. [29] S. Xiong, Y. Zhao, Y. Wang, J. Song, X. Zhao, and S. Li, Enhanced Interfacial Properties of Carbon Fiber/Epoxy Composites by Coating Carbon Nanotubes onto Carbon Fiber Surface by One-Step Dipping Method, Appl Surf Sci, vol. 546, Apr. 2021, doi: 10.1016/j.apsusc.2021.149135. [30] H. Gao, Some General Properties of Stress-Driven Surface Evolution in A Heteroepitaxial Thin Film Structure, Journal of Mechanics and Physics of Solids in Materials, vol. 42. Elsevier Ltd, pp. 741–772, 1993. doi:10.1016/0022-5096(94)90041-8. [31] H. Teixidó, J. Staal, B. Caglar, and V. Michaud, Capillary Effects in Fiber Reinforced Polymer Composite Processing: A Review, Frontiers in Materials, vol. 9. Frontiers Media S.A., Feb. 10, 2022. doi: 10.3389/fmats.2022.809226. [32] H. N. Dhakal, Z. Y. Zhang, and M. O. W. Richardson, Effect of Water Absorption on The Mechanical Properties of Hemp Fibre Reinforced Unsaturated Polyester Composites, Compos Sci Technol, vol. 67, no. 7–8, pp. 1674–1683, Jun. 2007, doi: 10.1016/j.compscitech.2006.06.019. [33] A. Moudood, A. Rahman, A. Öchsner, M. Islam, and G. Francucci, Flax Fiber and Its Composites: An Overview of Water and Moisture Absorption Impact on Their Performance, Journal of Reinforced Plastics and Composites, vol. 38, no. 7, pp. 323–339, Apr. 2019, doi: 10.1177/0731684418818893. [34] D. Ariawan, Z. A. Mohd Ishak, M. S. Salim, R. Mat Taib, M. Z. Ahmad Thirmizir, and H. Pauzi, The Effect of Alkalization on The Mechanical and Water Absorption Properties of Nonwoven Kenaf Fiber/Unsaturated Polyester Composites Produced by Resin-Transfer Molding, Polym Compos, vol. 37, no. 12, pp. 3516–3526, Dec. 2016, doi: 10.1002/pc.23551. [35] S. Kocaman, M. Karaman, M. Gursoy, and G. Ahmetli, Chemical and Plasma Surface Modification of Lignocellulose Coconut Waste for The Preparation of Advanced Biobased Composite Materials, Carbohydr Polym, vol. 159, pp. 48–57, Mar. 2017, doi: 10.1016/j.carbpol.2016.12.016.

Conference: CAMX 2024 | San Diego CA

Publication Date: 2024/9/9

SKU: TP24-0000000279

Pages: 10

Price: $20.00

Get This Paper