Title: Fused-Granular-Fabrication using Sustainable Carbon Fibre/PEKK-PEEK Pellets: Process Parameter Identification
Authors: Ruan-Isabelle Richard Soucy, Adam W. Smith, Kevin Dupuis, Ilyass Tabiai, Martine Dubé
DOI: 10.33599/nasampe/c.24.0323
Abstract: Sustainability is at the heart of today’s technological transformation, driving the development of new materials, new processes and more creative end-user applications. In this study, sustainable carbon fibre reinforced pellets made using recycled materials, including both PEKK and PEEK polymers, are evaluated in the fused granular fabrication (FGF) process. Thermogravimetric analysis and differential scanning calorimetry are employed to determine pellet thermal stability. FGF manufacturing trials featuring a standard test box geometry are conducted on a large-scale six-axis AM Flexbot robot from CEAD group. ASTM tensile and flexural specimens are extracted from the walls of printed boxes and used to assess the material’s mechanical performance relative to other comparable systems. Calorimetry results show that some polymer degradation, assumed to be in the form of cross-linking, occurs when the PEKK-PEEK matrix is held for an extended period of time in air at temperatures as low as 380 °C. This phenomenon was not duplicated in the FGF trials as the material is rapidly cooled following extrusion. Specimens extracted from boxes printed at 380 °C exhibited highly anisotropic mechanical properties, as is common in parts manufactured using polymer extrusion AM techniques. With additional process optimization, it is likely that mechanical performance can be improved, and better compared to industrial standards such as injection or compression moulding.
References: 1. Avenet, J. Thèse de doctorat: Assemblage par fusion de composites à matrice thermoplastique : Caractérisation expérimentale et modélisation de la cinétique d’auto-adhésion hors équilibre. Thermique [physics.classph]. Université de Nantes (UN), 2021. 2. Choupin, T. PhD. Thesis: Mechanical performances of PEKK thermoplastic composites linked to their processing parameters. ENSAM. Paris: ParisTech, 2017. 3. Courvoisier, E., Bicaba, Y., & Colin, X. Proposition d’un modèle cinétique pour la dégradation thermique de la matrice PEEK. Matériaux & Techniques, 104(2), 204. Paris, 2016. [https://doi.org/10.1051/mattech/2016011] 4. Courvoisier, E., Bicaba, Y., & Colin, X. Analyse de la dégradation thermique du Poly(étheréthercétone). Matériaux & Techniques, 105(4), 403. Paris, 2017. [https://doi.org/10.1051/mattech/2018007] 5. De Almeida, O., Feuillerat, L., Fontanier, J.-C., & Schmidt, F. Determination of a degradation-induced limit for the consolidation of CF/PEEK composites using a thermo-kinetic viscosity model. Elsevier: Composites Part A: Applied Science and Manufacturing, 158, 106943, 2022. [https://doi.org/10.1016/j.compositesa.2022.106943] 6. Doumeng, M., Makhlouf, L., Berthet, F., Marsan, O., Delbé, K., Denape, J., & Chabert, F. A comparative study of the crystallinity of polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques. Elsevier: Polymer Testing, 93, 106878. Toulouse, 2021. [https://doi.org/10.1016/j.polymertesting.2020.106878] 7. LeBlanc, D. Compression moulding of complex parts with randomly-oriented strand thermoplastic composites. McGill University. Montreal, 2014 8. Picher-Martel, G.-P., Lévy, A., & Hubert, P. Compression molding of Carbon/Polyether ether ketone composites: Squeeze flow behavior of unidirectional and randomly oriented strands. Polymer Composites, 38(9), 1828 1837. 2017 [https://doi.org/10.1002/pc.23753] 9. Zhang, H., PhD. Thesis: Fire-safe polymers and polymer composites. University of Massachusetts Amherst, MA: ProQuest. 2003. 10. CEAD Large Scale Additive Manufacturing E25 Brochure. https://ceadgroup.com/solutions/technology-components/e25/
Conference: CAMX 2024 | San Diego CA
Publication Date: 2024/9/9
SKU: TP24-0000000323
Pages: 15
Price: $30.00
Get This Paper