Get This Paper

Approximations By Reduced-Order Models for Nonlinear Flutter of Variable Stiffness Composite Plates


Title: Approximations By Reduced-Order Models for Nonlinear Flutter of Variable Stiffness Composite Plates

Authors: Hamed Akhavan and Pedro Ribeiro

DOI: 10.33599/nasampe/s.19.1499

Abstract: In this investigation, we analyze errors due to using reduced-order models instead of full-order models in the examination of nonlinear flutter of variable stiffness composite laminates (VSCLs). These plates can be made, e.g., by Automated Tow Placement Machines, using composite laminates with curvilinear fibers; in our particular case, the orientation angle of the reference curvilinear fiber path changes linearly from T0 at the left edge to T1 at the right edge of the plate. A Third-order Shear Deformation Theory (TSDT) is used to model the laminate and a p-version finite element is applied to discretize the displacements and rotations. The plates are subjected to a supersonic airflow of which the aerodynamic pressure is approximated using linear Piston theory. The equations of motion of the full-order model of the self-excited vibrational system are formed using the principle of virtual displacements. In order to reduce the number of degrees-of-freedom of the full-order model, static condensation and/or a modal summation method are used. The equations of motion of the reduced-order and full-order models are solved using Newmark method to study the dynamic responses, focusing on limit cycle oscillations (LCOs). Approximation errors are discussed for LCO amplitudes of VSCL plates with various curvilinear fiber paths.

References: 1. Thompson, J. M. T., and Stewart, H. B., Nonlinear Dynamics and Chaos, John Wiley & Sons, 2002. 2. Guo, X., and Mei, C., “Using Aeroelastic Modes for Nonlinear Panel Flutter at Arbitrary Supersonic Yawed Angle,” AIAA Journal, Vol. 41, No. 2, 2003, pp. 272–279. doi:10.2514/2.1940 3. Przekop, A., Guo, X., and Rizzi, S. A., “Alternative Modal Basis Selection Procedures for Reduced-Order Nonlinear Random Response Simulation,” Journal of Sound and Vibration, Vol. 331, No. 17, 2012, pp. 4005–4024. doi:10.1016/j.jsv.2012.03.034 4. Rizzi, S. A., and Przekop, A., “System Identification-Guided Basis Selection for Reduced-Order Nonlinear Response Analysis,” Journal of Sound and Vibration, Vol. 315, No. 3, 2008, pp. 467–485. doi:10.1016/j.jsv.2007.12.031 5. Gai, G., and Timme, S., “Nonlinear Reduced-Order Modelling for Limit-Cycle Oscillation Analysis,” Nonlinear Dynamics, Vol. 84, No. 2, 2016, pp. 991–1009. doi:10.1007/s11071-015-2544-9 6. Gang, C., Yingtao, Z., Jian, S., and Yueming, L., “Support-Vector-Machine-Based Reduced-Order Model for Limit Cycle Oscillation Prediction of Nonlinear Aeroelastic System,” Mathematical Problems in Engineering, Vol. 2012, 2012. doi:10.1155/2012/152123 7. Gang, C., Yueming, L., and Guirong, Y., “Active Control Law Design for Flutter/LCO Suppression Based on Reduced Order Model Method,” Chinese Journal of Aeronautics, Vol. 23, No. 6, 2010, pp. 639–646. doi:10.1016/s1000-9361(09)60265-x 8. Balajewicz, M., and Dowell, E., “Reduced-Order Modeling of Flutter and Limit-Cycle Oscillations using the Sparse Volterra Series,” Journal of Aircraft, Vol. 49, No. 6, 2012, pp. 1803–1812. doi:10.2514/1.c031637 9. Zhang, W., Wang, B., and Ye, Z., “High Efficient Numerical Method for Limit Cycle Flutter Analysis Based on Nonlinear Aerodynamic Reduced-Order-Model,” 51st AIAA, ASME, ASCE, AHS, ASC Structures, Structural Dynamics and Material Conference, Orlando, Florida, 2010. doi:10.2514/6.2010-2723 10. Akhavan, H., and Ribeiro, P., “Natural Modes of Vibration of Variable Stiffness Composite Laminates with Curvilinear Fibers,” Composite Structures, Vol. 93, No. 11, 2011, pp. 3040–3047. doi:10.1016/j.compstruct.2011.04.027 11. Akhavan, H., Ribeiro, P., and De Moura, M. F. S. F., “Large Deflection and Stresses in Variable Stiffness Composite Laminates with Curvilinear Fibres,” International Journal of Mechanical Sciences, Vol. 73, 2013, pp. 14–26. doi:10.1016/j.ijmecsci.2013.03.013 12. Akhavan, H., Ribeiro, P., and De Moura, M. F. S. F., “Damage Onset on Tow-Placed Variable Stiffness Composite Laminates,” Composite Structures, Vol. 113, 2014, pp. 419–428. doi:10.1016/j.compstruct.2014.03.038 13. Ribeiro, P., “Non-Linear Free Periodic Vibrations of Variable Stiffness Composite Laminated Plates,” Nonlinear Dynamics, Vol. 70, No. 2, 2012, pp. 1535–1548. doi:10.1007/s11071-012-0554-4 14. Ribeiro, P., “Non-Linear Modes of Vibration of Thin Cylindrical Shells in Composite Laminates with Curvilinear Fibres,” Composite Structures, Vol. 122, 2015, pp. 184–197. doi:10.1016/j.compstruct.2014.11.019 15. Ribeiro, P., and Stoykov, S., “Forced Periodic Vibrations of Cylindrical Shells in Laminated Composites with Curvilinear Fibres,” Composite Structures, Vol. 131, 2015, pp. 462–478. doi:10.1016/j.compstruct.2015.05.050 16. Akhavan, H., and Ribeiro, P., “Geometrically Non-Linear Periodic Forced Vibrations of Imperfect Laminates with Curved Fibres by the Shooting Method,” Composites Part B: Engineering, Vol. 109, No. 15, 2017, pp. 286–296. doi:10.1016/j.compositesb.2016.10.059 17. Akhavan, H., and Ribeiro, P., “Free Geometrically Nonlinear Oscillations of Perfect and Imperfect Laminates with Curved Fibres by the Shooting Method,” Nonlinear Dynamics, Vol. 81, No. 1-2, 2015, pp. 949–965. doi:10.1007/s11071-015-2043-z 18. Akhavan, H., and Ribeiro, P., “Non-Linear Forced Periodic Oscillations of Laminates with Curved Fibres by the Shooting Method,” International Journal of Non-Linear Mechanics, Vol. 76, 2015, pp. 176–189. doi:10.1016/j.ijnonlinmec.2015.06.004 19. Akhavan, H., and Ribeiro, P., “Aeroelasticity of Composite Plates with Curvilinear Fibres in Supersonic Flow,” Composite Structures, Vol. 194, No. 15, 2018, pp. 335–344. doi:10.1016/j.compstruct.2018.03.101 20. Ribeiro P, Akhavan H, Teter A, Warmiński J. A review on the mechanical behaviour of curvilinear fibre composite laminated panels. Journal of Composite Materials. 2014 Sep;48(22):2761-77. DOI: /10.1177/0021998313502066 21. Lukaszewicz, D. H. J. A., Ward, C., and Potter, K. D., “The Engineering Aspects of Automated Prepreg Layup: History, Present and Future,” Composites Part B: Engineering, Vol. 43, No. 3, 2012, pp. 997–1009. doi:10.1016/j.compositesb.2011.12.003 22. Ungwattanapanit, T., and Baier, H., “Postbuckling Analysis and Optimization of Stiffened Fuselage Panels Utilizing Variable-Stiffness Laminates,” Proceedings of 29th Congress of the International Council of the Aeronautical Sciences (ICAS2014), St. Petersburg, Russia, 2014, p. 68. 23. Stanford, B. K., and Jutte, C. V., “Comparison of Curvilinear Stiffeners and Tow Steered Composites for Aeroelastic Tailoring of Aircraft Wings,” Computers & Structures, Vol. 183, 2017, pp. 48–60. doi:10.1016/j.compstruc.2017.01.010 24. Stanford, B. K., Jutte, C. V., and Wu, K. C., “Aeroelastic Benefits of Tow Steering for Composite Plates,” Composite Structures, Vol. 118, 2014, pp. 416–422. doi:10.1016/j.compstruct.2014.08.007 25. Haddadpour, H., and Zamani, Z., “Curvilinear Fiber OptimizationTools for Aeroelastic Design of Composite Wings,” Journal of Fluids and Structures, Vol. 33, 2012, pp. 180–190. doi:10.1016/j.jfluidstructs.2012.05.008 26. Guimarães, T. A. M., Castro, S. G. P., Rade, D. A., and Cesnik, C. E. S., “Panel Flutter Analysis and Optimization of Composite Tow Steered Plates,” 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, Texas, 2017, p. 1118. doi:10.2514/6.2017-1118 27. Akhavan, H., and Ribeiro, P., “Reduced-Order Models for Non-Linear Flutter of Composite Laminates with Curvilinear Fibers”, 2018, submitted to AIAA Journal. 28. Vlasov, B. F., “On the Equations of Bending of Plates,” Dokla Ak Nauk Azerbeijanskoi-SSR, Vol. 3, 1957, pp. 955–979 29. Reddy, J. N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, 2004. doi:10.1201/b12409 30. Han, W., Petyt, M., and Hsiao, K. M., “An Investigation into Geometrically Nonlinear Analysis of Rectangular Laminated Plates using the Hierarchical Finite Element Method,” Finite Elements in Analysis and Design, Vol. 18, No. 1-3, 1994, pp. 273–288. doi:10.1016/0168-874x(94)90107-4 31. Akhavan, H., “Non-Linear Vibrations of Tow Placed Variable Stiffness Composite Laminates,” Ph.D. thesis, University of Porto, 2015. 32. Dowell, E. H., Clark, R., Cox, D., Curtiss, H. C., Edwards, J. W., Hall, K. C., Peters, D. A., Scanlan, R., Simiu, E., Sisto, F., et al., A Modern Course in Aeroelasticity, Kluwer Academic Publishers, Dordrecht, 2004. 33. Meirovitch, L., Computational Methods in Structural Dynamics, Springer Science & Business Media, 1980.

Conference: SAMPE 2019 - Charlotte, NC

Publication Date: 2019/05/20

SKU: TP19--1499

Pages: 14

Price: FREE

Get This Paper