Get This Paper

Automated Fiber Placement of Thermoplastic Materials: Pursuit of Low Porosity Without the Autoclave


Title: Automated Fiber Placement of Thermoplastic Materials: Pursuit of Low Porosity Without the Autoclave

Authors: Justin Merotte, Denis Cartié, Kevin Henry, Yves Gohens, and Alexandre Hamlyn

DOI: 10.33599/nasampe/s.19.1564

Abstract: In-situ consolidation, where very low porosity content is sought, has been focusing attention of the aircraft industry for the past few years. This paper presents the latest advances made by Coriolis on such topic. A state of the art laser assisted automated fiber placement (AFP) head developed by Coriolis was used to produce in-situ and autoclave consolidated samples. Porosity content, degree of crystallinity and interlaminar shear strength were measured for each consolidation type. Manufacturing settings leading to very limited porosity content and acceptable degree of crystallinity are presented and improvement paths are proposed to highlight key features needed for the next generation of AFP machines.

References: [1] G. Gardiner, « SAMPE Europe highlights: Composites face challenges in next commercial airframes ». [En ligne]. Disponible sur: [Consulté le: 13-nov-2018]. [2] J. Sloan, « Daher announces new thermoplastic composite wing rib ». [En ligne]. Disponible sur: [Consulté le: 13-nov-2018]. [3] Staff, « Thermoplastic composites gain leading edge on the A380 ». [En ligne]. Disponible sur: [Consulté le: 13-nov-2018]. [4] R. Pitchumani, S. Ranganathan, R. C. Don, J. W. Gillespie, et M. A. Lamontia, « Analysis of transport phenomena governing interfacial bonding and void dynamics during thermoplastic tow-placement », Int. J. Heat Mass Transf., vol. 39, no 9, p. 1883‑1897, juin 1996. [5] F. Chinesta et al., « First steps towards an advanced simulation of composites manufacturing by automated tape placement », Int. J. Mater. Form., vol. 7, no 1, p. 81‑92, mars 2014. [6] A. Leon, A. Barasinski, E. Nadal, et F. Chinesta, « High-resolution thermal analysis at thermoplastic pre-impregnated acomposite interfaces », Compos. Interfaces, vol. 22, no 8, p. 767‑777, oct. 2015. [7] C. M. Stokes-Griffin et P. Compston, « A combined optical-thermal model for near-infrared laser heating of thermoplastic composites in an automated tape placement process », Compos. Part Appl. Sci. Manuf., vol. 75, p. 104‑115, août 2015. [8] J. Tierney et J. W. Gillespie, « Modeling of In Situ Strength Development for the Thermoplastic Composite Tow Placement Process », J. Compos. Mater., vol. 40, no 16, p. 1487‑1506, août 2006. [9] T. Kok, W. J. B. Grouve, L. Warnet, et R. Akkerman, « Intimate contact development in laser assisted fiber placement », in ECCM17 - 17th European conference on Composite Materials, 2016. [10] T. K. Slange, L. L. Warnet, W. J. B. Grouve, et R. Akkerman, « Deconsolidation of C/PEEK blanks: on the role of prepreg, blank manufacturing method and conditioning », Compos. Part Appl. Sci. Manuf., vol. 113, p. 189‑199, oct. 2018. [11] G. Dolo, J. Férec, D. Cartié, Y. Grohens, et G. Ausias, « Model for thermal degradation of carbon fiber filled poly(ether ether ketone) », Polym. Degrad. Stab., vol. 143, p. 20‑25, sept. 2017. [12] Z. Qureshi, T. Swait, R. Scaife, et H. M. El-Dessouky, « In situ consolidation of thermoplastic prepreg tape using automated tape placement technology: Potential and possibilities », Compos. Part B Eng., vol. 66, p. 255‑267, nov. 2014. [13] M. Di Francesco, L. Veldenz, G. Dell’Anno, et K. Potter, « Heater power control for multi-material, variable speed Automated Fibre Placement », Compos. Part Appl. Sci. Manuf., vol. 101, p. 408‑421, oct. 2017. [14] C. M. Stokes-Griffin et P. Compston, « Investigation of sub-melt temperature bonding of carbon-fibre/PEEK in an automated laser tape placement process », Compos. Part Appl. Sci. Manuf., vol. 84, p. 17‑25, mai 2016. [15] F. Sacchetti, W. J. B. Grouve, L. L. Warnet, et I. F. Villegas, « Effect of cooling rate on the interlaminar fracture toughness of unidirectional Carbon/PPS laminates », Eng. Fract. Mech., vol. 203, p. 126‑136, nov. 2018. [16] A. J. Comer et al., « Mechanical characterisation of carbon fibre–PEEK manufactured by laser-assisted automated-tape-placement and autoclave », Compos. Part Appl. Sci. Manuf., vol. 69, p. 10‑20, févr. 2015. [17] D. Cartié, « Automated fiber placement of thermoplastic materials: effects of process parameters on the mechanical properties of the laminate », présenté à SAMPE, Long Beach, 2018. [18] « TenCate-Cetex-TC1200_PEEK_PDS.pdf ». . [19] D. J. Blundell et B. N. Osborn, « The morphology of poly(aryl-ether-ether-ketone) », Polymer, vol. 24, no 8, p. 953‑958, août 1983. [20] A. A. Mehmet-Alkan et J. N. Hay, « The crystallinity of poly(ether ether ketone) », Polymer, vol. 33, no 16, p. 3527‑3530, janv. 1992. [21] T. W. Giants, « Crystallinity and dielectric properties of PEEK, poly(ether ether ketone) », IEEE Trans. Dielectr. Electr. Insul., vol. 1, no 6, p. 991‑999, déc. 1994. [22] A. A. Mehmet-Alkan et J. N. Hay, « The crystallinity of PEEK composites », Polymer, vol. 34, no 16, p. 3529‑3531, janv. 1993. [23] G. Dolo, « Étude expérimentale et modélisation du procédé de placement de fibres avec chauffe laser », thesis, Lorient, 2017. [24] W. J. . Grouve, Weld strength of laser-assisted tape-placed thermoplastic composites. Enschede: University of Twente [Host, 2012.

Conference: SAMPE 2019 - Charlotte, NC

Publication Date: 2019/05/20

SKU: TP19--1564

Pages: 16

Price: FREE

Get This Paper