Get This Paper

Characterizing Thermoset Curing Using Rheology


Title: Characterizing Thermoset Curing Using Rheology

Authors: Tianhong T. Chen, and Bharath Rajaram

DOI: 10.33599/nasampe/s.19.1595

Abstract: Studying the mechanical property changes accompanying a curing reaction is one of the most challenging rheological tests on account of the significant changes in sample properties during the curing process. In a typical thermoset cure, the change in modulus and viscosity can be as large as 6-8 orders of magnitude and can take place over short durations. This poses unique challenges for the experimentalist as the measurement torque can go from the instrument minimum in the pre-cure state to the maximum post-cure. As a result, one set of fixed test parameters cannot be used for monitoring the entire curing process. In this paper, we provided guidance for designing appropriate rheological test methods for curing analysis and elaborate on the importance of critical test parameters such as strain and axial force for achieving accurate and reproducible results. We concluded by comparing different approaches to quantify the gel point measurements and present results from gelation kinetics analysis.

References: 1. H. Dodiuk and S.H. Goodman, Handbook of Thermoset Plastics, William Andrew 2013, ISBN 13: 9781455731077, DOI: 978-1-4557-3107-7 2. S. F. Zhao, G. P. Zhang, R. Sun, C. P. Wong, “Curing kinetics, mechanism and chemorheological behavior of methanol etherified amino/novolac epoxy systems”. eXPRESS Polymer Letters, 8, 2,95-106, 2014. DOI: 10.3144/expresspolymlett.2014.12 3. B. P. Losada, A. Habas-Ulloa, P. Pignolet, N. Quentin, D. Fellmann, J. P. Habas, “Rheological and thermal study of the curing process of a cycloaliphatic epoxy resin: application to the optimization of the ultimate thermomechanical and electrical properties” Journal of Physics D: Applied Physics,. 46,6, 2013. DOI: 10.1088/0022-3727/46/6/065301 4. A. J. Mackinnon, S. D. Jenkins, P. T. McGrall, R. A. Pethrick, “A Dielectric, Mechanical, Rheological, and Electron Microscopy Study of Cure and Properties of a Thermoplastic-Modified Epoxy Resin”, Macromolecules, 25, 3492-3499, 1992. DOI: 10.1021/ma00039a029 5. L. Nunez-Regueira, C.A. Gracia-Fernandez, S. Gomez-Barreiro, “Use of Rheology, Dielectric Analysis and Differential Scanning Calorimetry for Gel Time Determination of a Thermoset”, Polymer, 46, 5979-5985, 2005. DOI: 10.1016/j.polymer.2005.05.060 6. B. D. Park, B. Riedl, E. W. Hsu, J. Shields, “Differential Scanning Calorimetry of Phenol-formaldehyde Resins Cure-accelerated by Carbonates”. Polymer, 40, 1689-1699, 1999. DOI: 10.1016/S0032-3861(98)00400-5 7. R. Hardis, J. L. P. Jessop, F. E. Peters, M. R. Kessler, “Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA” , Composites: Part A, 49, 100-108, 2013. DOI: 10.1016/j.compositesa. 8. E. Jowdar, F. Alipor, Milad. Jowdar, Mahdi Jowdar, M. Darabiniya, “Study of Mechanical Properties, Cure Kinetics and Rheology of Nanoclay/Vinyl Ester Resin Composites”. International Journal of Mining, Metallury & Mechanical Engineering (IJMMME), Volume 1, Issue 2, 114-120, 2013. ISSN 2320–4060 URL: 9. G. Liang, K. Chandrashekhara, “Cure Kinetics and Rheology Characterization of Soy-Based Epoxy Resin System”. Journal of Applied Polymer Science, 102, 3168-3180, 2006. DOI: 10.1002/app.24369 10. M. D. Hickey, S. Bickerton, “Cure kinetics and rheology characterization and modelling of ambient temperature curing epoxy resins for resin infusion/VARTM and wet layup applications”, Journal of Materials Science, 48, 690–701, 2013. DOI 10.1007/s10853-012-6781-8 11. D. Rosu, C. N. Cascaval, F. Mustata, C. Ciobanu, “Cure kinetics of epoxy resins studied by non-isothermal DSC data”. Thermochimica Acta, 383, 119-127, 2002. DOI: 10.1088/0022-3727/46/6/065301 12. A. Yousefi, P. G. Lafleur, R. Gauvin, “Kinetic Studies of Thermoset Cure Reactions: A Review”. Polymer Composites, 18, 2, 158-168, 1997. DOI: 10.1002/pc.10270 13. R. B. Prime, Chapter 6, “Thermoset” in “Thermal Characterization of Polymeric Materials”. E.A. Turi ed., Academic Press, San Diego, 1997. eBook ISBN: 9780323141888. DOI: 978-0-12-703780-6 14. M.B. Roller, “Rheology of Curing Thermosets: A Review”, Polymer Engineering and Science, 26, 6, 432-440, 1986. DOI: 10.1002/pen.760260610 15. J. Djonlagic, A. Zlatanic, B. Dunjic, S. Markovic, “Rheological Study of the Network Formation of Thermosetting Polymers”, Hemijska Industrija, 54, 10, 428-437, 2000, DOI: 532.135:678.7 16. M. Yang, D. Wang, N. Sun, C. Chen, X. Zhao, “Rheological Behavior and Cure Kinetic Studies of a Trifunctional Phenylethynyl-terminated Imide Oligomer”, High Performance Polymer, 27, 4, 449-457, 2015, DOI: 10.1177/0954008314555521 17. B.L. Burton, “Acceleration of Amine-Cured Epoxy Resin Systems.” Thermoset Resin Formulators Association Meeting, Newport, Rhode Island, 2013. 18. Y. Nawab, S. Shahid, N. Boyard, F. Jacquemin, “Review: Chemical Shrinkage Characterization Techniques for Thermoset Resins and Associated Composites”, Journal of Materials Science, 48, 16, 5387-5409, 2013. DOI: 10.1007/s10853-013-7333-6 19. M. Kotani, Y. Arao, J. Koyanagi, H. Kawada, H. Hatta, Y Ishida, “Quantitative Evaluation of Curing Shrinkage in Polymer Matrix Composites”, 16th International Conference on Composite Materials, Kyoto, Japan, 2007. 20. M. Zarrelli, A. Skordos, I. Partridge, “Investigation of Cure Induced Shrinkage in Unreinforced Epoxy Resin”, Plastics, Rubber and Composites Processing and Applications 31, 377-384, 2002. DOI: 10.1179/146580102225006350 21. H. H. Winter, “Can the Gel Point of a Cross-linking Polymer Be Detected by the G’-G” Crossover?”, Polymer Engineering and Science, 27, 22, 1698-1702, 1987. DOI: 10.1002/pen.760272209 22. F.G.Mussatti, C.W.Macosko, “Rheology of Network Forming Systems”, Polymer Engineering & Science, 13, 236-240, 1973. DOI: 10.1002/pen.760130312

Conference: SAMPE 2019 - Charlotte, NC

Publication Date: 2019/05/20

SKU: TP19--1595

Pages: 17

Price: FREE

Get This Paper