Title: Evaluation of Silicon-containing Phthalonitrile Polymers- Properties, and Degradations
Authors: William J. Monzel, Guo-Quan Lu, Timothy L. Pruyn, Christopher L. Houser, and Gordon T. Yee
DOI: 10.33599/nasampe/s.19.1534
Abstract: Phthalonitrile polymers are of interest as resins for high temperature polymer matrix composites and encapsulation of wide band-gap power modules. However, their long-term use at temperatures above 250 °C is limited by oxidative degradation. The inclusion of organosilicon moieties into the polymer structure may provide higher temperature performance in oxidizing environments while maintaining good processing characteristics. In this work, several phenyl-substituted organosilicon linkages were incorporated to investigate their effect on processing, thermo-mechanical properties, and thermal and oxidative stability. Three silicon-containing phthalonitrile monomers were synthesized incorporating diphenoxydiphenylsilane, tetraphenylsilane, and hexaphenyldisiloxane moieties. Increasing the purity of monomers adversely affected the processing, glass transition, and stability. Processability was highly dependent on catalyst content and an ideal concentration was determined. The impact on glass transition, coefficient of thermal expansion, stability in TGA, and long-term oxidative stability at 250 °C was evaluated. Degradations were examined in more detail via IR-TGA. Results are compared with commercial phthalonitriles and relevant literature.
References: 1. Keller, T. M.; Price, T. R., "Amine-Cured Bisphenol-Linked Phthalonitrile Resins." Journal of Macromolecular Science: Part A - Chemistry 18 (1982), 931-937 http://dx.doi.org/10.1080/00222338208077208. 2. Laskoski, M.; Dominguez, D. D.; Keller, T. M., "Synthesis and properties of a bisphenol A based phthalonitrile resin." Journal of Polymer Science Part A: Polymer Chemistry 43 (2005), 4136-4143 http://dx.doi.org/10.1002/pola.20901. 3. Laskoski, M.; Neal, A.; Keller, T. M.; Dominguez, D.; Klug, C. A.; Saab, A. P., "Improved synthesis of oligomeric phthalonitriles and studies designed for low temperature cure." Journal of Polymer Science Part A: Polymer Chemistry 52 (2014), 1662-1668 http://dx.doi.org/10.1002/pola.27161. 4. Laskoski, M.; Neal, A.; Schear, M. B.; Keller, T. M.; Ricks-Laskoski, H. L.; Saab, A. P., "Oligomeric aliphatic–aromatic ether containing phthalonitrile resins." Journal of Polymer Science Part A: Polymer Chemistry 53 (2015), 2186-2191 http://dx.doi.org/10.1002/pola.27659. 5. Tong, L.; Jia, K.; Liu, X., "Novel phthalonitrile-terminated polyarylene ether nitrile with high glass transition temperature and enhanced thermal stability." Materials Letters 128 (2014), 267-270 http://dx.doi.org/10.1016/j.matlet.2014.04.132. 6. Liu, Y. "Packaging of Silicon Carbide High Temperature, High Power Devices - Processes and Materials." Auburn University, Auburn, Alabama, 2006. 7. Guenthner, A. J.; Yandek, G. R.; Wright, M. E.; Petteys, B. J.; Quintana, R.; Connor, D.; Gilardi, R. D.; Marchant, D., "A New Silicon-Containing Bis(cyanate) Ester Resin with Improved Thermal Oxidation and Moisture Resistance." Macromolecules 39 (2006), 6046-6053 http://dx.doi.org/10.1021/ma060991m. 8. Guenthner, A. J.; Vij, V.; Haddad, T. S.; Reams, J. T.; Lamison, K. R.; Sahagun, C. M.; Ramirez, S. M.; Yandek, G. R.; Suri, S. C.; Mabry, J. M., "Silicon-containing trifunctional and tetrafunctional cyanate esters: Synthesis, cure kinetics, and network properties." Journal of Polymer Science Part A: Polymer Chemistry 52 (2014), 767-779 http://dx.doi.org/10.1002/pola.27052. 9. Yilgör, E.; Yilgör, I., "Silicone containing copolymers: Synthesis, properties and applications." Progress in Polymer Science 39 (2014), 1165-1195 http://dx.doi.org/10.1016/j.progpolymsci.2013.11.003. 10. Xi, K.; Meng, Z.; Heng, L.; Ge, R.; He, H.; Yu, X.; Jia, X., "Polyimide–polydimethylsiloxane copolymers for low-dielectric-constant and moisture-resistance applications." Journal of Applied Polymer Science 113 (2009), 1633-1641 http://dx.doi.org/10.1002/app.30154. 11. Saxena, K.; Bisaria, C. S.; Kalra, S. J. S.; Saxena, A. K., "Synthesis of some novel silicone-imide hybrid inorganic–organic polymer and their properties." Progress in Organic Coatings, http://dx.doi.org/10.1016/j.porgcoat.2014.08.016. 12. Damaceanu, M.-D.; Musteata, V.-E.; Cristea, M.; Bruma, M., "Viscoelastic and dielectric behaviour of thin films made from siloxane-containing poly(oxadiazole-imide)s." European Polymer Journal 46 (2010), 1049-1062 http://dx.doi.org/10.1016/j.eurpolymj.2010.01.020. 13. Zhuo, D. X.; Gu, A. J.; Liang, G. Z.; Hu, J. T.; Cao, L.; Yuan, L., "Flame retardancy and flame retarding mechanism of high performance hyperbranched polysiloxane modified bismaleimide/cyanate ester resin." Polymer Degradation and Stability 96 (2011), 505-514 http://dx.doi.org/10.1016/j.polymdegradstab.2011.01.006. 14. Augustine, D.; Mathew, D.; Nair, C. P. R., "Phenol-containing phthalonitrile polymers - synthesis, cure characteristics and laminate properties." Polymer International 62 (2013), 1068-1076 http://dx.doi.org/10.1002/pi.4393. 15. Dominguez, D. D.; Keller, T. M., "Properties of phthalonitrile monomer blends and thermosetting phthalonitrile copolymers." Polymer 48 (2007), 91-97 http://dx.doi.org/10.1016/j.polymer.2006.11.003. 16. Keller, T. M.; Dominguez, D. D.; Laskoski, M., "Oligomeric bisphenol A-based PEEK-like phthalonitrile-cure and polymer properties." Journal of Polymer Science Part A: Polymer Chemistry 54 (2016), 3769-3777 http://dx.doi.org/10.1002/pola.28276. 17. Laskoski, M.; Dominguez, D. D.; Keller, T. M., "Synthesis and properties of aromatic ether phosphine oxide containing oligomeric phthalonitrile resins with improved oxidative stability." Polymer 48 (2007), 6234-6240 http://dx.doi.org/10.1016/j.polymer.2007.08.028. 18. Keller, T. M.; Dominguez, D. D., "High temperature resorcinol-based phthalonitrile polymer." Polymer 46 (2005), 4614-4618 http://dx.doi.org/10.1016/j.polymer.2005.03.068. 19. Hilmar Koerner, T. G., G. P. Tandon, & Heritage Weems. "Phthalonitriles (PN): Thermo-Oxidative Stability (TOS) Study." High Temple Workshop. Charleston, SC, January 23-26. 20. Zhang, Z. B.; Li, Z.; Zhou, H.; Lin, X. K.; Zhao, T.; Zhang, M. Y.; Xu, C. H., "Self-Catalyzed Silicon-Containing Phthalonitrile Resins with Low Melting Point, Excellent Solubility and Thermal Stability." Journal of Applied Polymer Science 131 (2014), http://dx.doi.org/10.1002/app.40919. 21. Babkin, A. V.; Zodbinov, E. B.; Bulgakov, B. A.; Kepman, A. V.; Avdeev, V. V., "Low-melting siloxane-bridged phthalonitriles for heat-resistant matrices." European Polymer Journal 66 (2015), 452-457 http://dx.doi.org/10.1016/j.eurpolymj.2015.03.015. 22. Bulgakov, B. A.; Babkin, A. V.; Dzhevakov, P. B.; Bogolyubov, A. A.; Sulimov, A. V.; Kepman, A. V.; Kolyagin, Y. G.; Guseva, D. V.; Rudyak, V. Y.; Chertovich, A. V., "Low-melting phthalonitrile thermosetting monomers with siloxane- and phosphate bridges." European Polymer Journal 84 (2016), 205-217 http://dx.doi.org/10.1016/j.eurpolymj.2016.09.013. 23. Wang, M.; Ning, Y., "Oligosilylarylnitrile: The Thermoresistant Thermosetting Resin with High Comprehensive Properties." ACS Applied Materials & Interfaces 10 (2018), 11933-11940 http://dx.doi.org/10.1021/acsami.8b00238. 24. Dzhevakov, P. B.; Korotkov, R. F.; Bulgakov, B. A.; Babkin, A. V.; Kepman, A. V.; Avdeev, V. V., "Synthesis and polymerization of disiloxane Si–O–Si-linked phthalonitrile monomer." Mendeleev Communications 26 (2016), 527-529 http://dx.doi.org/10.1016/j.mencom.2016.11.023. 25. Li, X.; Yu, B.; Zhang, D.; Lei, J.; Nan, Z., "Cure Behavior and Thermomechanical Properties of Phthalonitrile–Polyhedral Oligomeric Silsesquioxane Copolymers." Polymers 9 (2017), 334 http://dx.doi.org/10.3390/polym9080334. 26. Yang, Z.; Han, S.; Zhang, R.; Feng, S.; Zhang, C.; Zhang, S., "Effects of silphenylene units on the thermal stability of silicone resins." Polymer Degradation and Stability 96 (2011), 2145-2151 http://dx.doi.org/10.1016/j.polymdegradstab.2011.09.014. 27. Camino, G.; Lomakin, S. M.; Lazzari, M., "Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects." Polymer 42 (2001), 2395-2402 http://dx.doi.org/10.1016/S0032-3861(00)00652-2. 28. Sun, J. T.; Huang, Y. D.; Cao, H. L.; Gong, G. F., "Effects of ambient-temperature curing agents on the thermal stability of poly(methylphenylsiloxane)." Polymer Degradation and Stability 85 (2004), 725-731 http://dx.doi.org/10.1016/j.polymdegradstab.2004.03.018. 29. BEATTIE, S. R. "The Thermal Decomposition of Some Silphenylene Siloxane Polymers." University of Glasgow, 1981. 30. Coutant, W. R. L., Arthur "A Kinetic Study of the Thermal Decomposition of Selected Cyclohexyl and Phenylsilanes." Battelle Memorial Inst Columbus Ohio Columbus Labs: Air Force Research Laboratories, Office of Aerospace Research, Wright Patterson Air Force Base, Ohio, 1969. 31. Cella, J.; Rubinsztajn, S., "Preparation of Polyaryloxysilanes and Polyaryloxysiloxanes by B(C6F5)3 Catalyzed Polyetherification of Dihydrosilanes and Bis-Phenols." Macromolecules 41 (2008), 6965-6971 http://dx.doi.org/10.1021/ma800833c. 32. Terraza, C. A.; Tagle, L. H.; Tundidor-Camba, A.; Gonzalez-Henriquez, C. M.; Sarabia-Vallejos, M. A.; Coll, D., "Synthesis and characterization of aromatic poly(ether-imide)s based on bis(4-(3,4-dicarboxyphenoxy)phenyl)-R,R-silane anhydrides (R = Me, Ph) - spontaneous formation of surface micropores from THF solutions." RSC Advances 6 (2016), 49335-49347 http://dx.doi.org/10.1039/C6RA00188B. 33. Monzel, W. J.; Lu, G.-Q.; Pruyn, T. L.; Houser, C. L.; Yee, G. T., "Thermal and oxidative behavior of a tetraphenylsilane-containing phthalonitrile polymer." High Performance Polymers 0 (2018), 0954008318811481 https://doi.org/10.1177/0954008318811481. 34. Monzel, W. J. "Synthesis, Processing, and Properties of Silicon-Containing Phthalonitrile Resins." Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2018. 35. Liu, X.-Q.; Jikei, M.; Kakimoto, M.-a., "Synthesis and Properties of AB-Type Semicrystalline Polyimides Prepared from Polyamic Acid Ethyl Ester Precursors." Macromolecules 34 (2001), 3146-3154 http://dx.doi.org/10.1021/ma001862n. 36. Zhao, F.; Liu, R.; Kang, C.; Yu, X.; Naito, K.; Qu, X.; Zhang, Q., "A novel high-temperature naphthyl-based phthalonitrile polymer: synthesis and properties." Rsc Advances 4 (2014), 8383-8390 http://dx.doi.org/10.1039/c3ra46638h. 37. Gardelle, B.; Duquesne, S.; Vu, C.; Bourbigot, S., "Thermal degradation and fire performance of polysilazane-based coatings." Thermochimica Acta 519 (2011), 28-37 http://dx.doi.org/10.1016/j.tca.2011.02.025. 38. Hamciuc, E.; Hamciuc, C.; Cazacu, M.; Ignat, M.; Zarnescu, G., "Polyimide–polydimethylsiloxane copolymers containing nitrile groups." European Polymer Journal 45 (2009), 182-190 http://dx.doi.org/10.1016/j.eurpolymj.2008.10.028. 39. Adhikari, R.; Dao, B.; Hodgkin, J.; Mardel, J., "Synthesis, structures and membrane properties of siloxane-imide co-polymers produced by aqueous polymerization." European Polymer Journal 47 (2011), 1328-1337 http://dx.doi.org/10.1016/j.eurpolymj.2011.02.018. 40. Ku, C.-K.; Lee, Y.-D., "Microphase separation in amorphous poly(imide siloxane) segmented copolymers." Polymer 48 (2007), 3565-3573 http://dx.doi.org/10.1016/j.polymer.2007.04.028. 41. Othman, M. B. H.; Ramli, M. R.; Tyng, L. Y.; Ahmad, Z.; Akil, H. M., "Dielectric constant and refractive index of poly (siloxane–imide) block copolymer." Mater. Des. 32 (2011), 3173-3182 http://dx.doi.org/10.1016/j.matdes.2011.02.048.
Conference: SAMPE 2019 - Charlotte, NC
Publication Date: 2019/05/20
SKU: TP19--1534
Pages: 15
Price: FREE
Get This Paper