Search

DIGITAL LIBRARY: SAMPE 2019 | CHARLOTTE, NC | MAY 20-23

Get This Paper

Fabrication and Characterization of Q-Carbon Field Emission Device

Description

Title: Fabrication and Characterization of Q-Carbon Field Emission Device

Authors: Ariful Haque, and Jagdish Narayan

DOI: 10.33599/nasampe/s.19.1560

Abstract: High-quality robust field emitting devices with stable emission over a long period of time are desirable for a wide range of applications. In this study, we focused on the design and fabrication processes, characterization, and field emission properties of large area Q-carbon (quenched carbon) composite thin films. The Fowler–Nordheim tunneling model is appropriate to explain the electron field emission (FE) mechanism. The microstructure and the morphology of those films were characterized by the Raman spectroscopy and the high-resolution scanning electron microscopy. The FE measurements on the Q-carbon cathode film show excellent field emission characteristics. The low turn-on field (as low as 2.4 V/μm), a high emission current density at a low applied electric field, and an excellent FE stability are the main features of the Q-carbon field emission devices. This work signifies that Q-carbon composite film can be used as an excellent emitter, which opens new possibilities for this novel material to be used in practical devices. Keywords: Field emission device, Q-carbon, pulsed laser annealing, and thin film.

References: [1] J. Narayan, A. Bhaumik, S. Gupta, A. Haque, R. Sachan, Progress in Q-carbon and related materials with extraordinary properties, Mater. Res. Lett. 6 (2018) 353–364. doi:10.1080/21663831.2018.1458753. [2] J. Narayan, A. Bhaumik, R. Sachan, A. Haque, S. Gupta, P. Pant, Direct conversion of carbon nanofibers and nanotubes into diamond nanofibers and the subsequent growth of large-sized diamonds, Nanoscale. 11 (2019) 2238–2248. doi:10.1039/C8NR08823C. [3] A. Haque, P. Pant, J. Narayan, Large-area diamond thin film on Q-carbon coated crystalline sapphire by HFCVD, J. Cryst. Growth. 504 (2018) 17–25. doi:10.1016/j.jcrysgro.2018.09.036. [4] N. Jiang, K. Eguchi, S. Noguchi, T. Inaoka, Y. Shintani, Structural characteristics and field electron emission properties of nano-diamond/carbon films, J. Cryst. Growth. 236 (2002) 577–582. doi:10.1016/S0022-0248(01)02219-9. [5] C. Li, P.X. Yan, X.C. Li, E.M. Chong, Electron field emission from diamond-like carbon nanodot arrays, Phys. E Low-Dimens. Syst. Nanostructures. 42 (2010) 1343–1346. doi:10.1016/j.physe.2009.11.018. [6] J. Kennedy, F. Fang, J. Futter, J. Leveneur, P.P. Murmu, G.N. Panin, T.W. Kang, E. Manikandan, Synthesis and enhanced field emission of zinc oxide incorporated carbon nanotubes, Diam. Relat. Mater. 71 (2017) 79–84. doi:10.1016/j.diamond.2016.12.007. [7] B.S. Satyanarayana, A. Hart, W.I. Milne, J. Robertson, Field emission from tetrahedral amorphous carbon, Diam. Relat. Mater. 7 (1998) 656–659. doi:10.1016/S0925-9635(97)00296-3. [8] A. Haque, J. Narayan, Electron field emission from Q-carbon, Diam. Relat. Mater. 86 (2018) 71–78. doi:10.1016/j.diamond.2018.04.008. [9] A. Haque, J. Narayan, Stability of electron field emission in Q-carbon, MRS Commun. 8 (2018) 1343–1351. doi:10.1557/mrc.2018.172. [10] A. Haque, M.A. Mamun, M.F.N. Taufique, P. Karnati, K. Ghosh, Large Magnetoresistance and Electrical Transport Properties in Reduced Graphene Oxide Thin Film, IEEE Trans. Magn. 54 (2018) 1–9. doi:10.1109/TMAG.2018.2873508. [11] A. Haque, M.A. Mamun, M.F.N. Taufique, P. Karnati, K. Ghosh, Temperature Dependent Electrical Transport Properties of High Carrier Mobility Reduced Graphene Oxide Thin Film Devices, IEEE Trans. Semicond. Manuf. 31 (2018) 535–544. doi:10.1109/TSM.2018.2873202. [12] J.-M. Bonard, J.-P. Salvetat, T. Stöckli, L. Forró, A. Châtelain, Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism, Appl. Phys. A. 69 (1999) 245–254. doi:10.1007/s003390050998. [13] Z.-S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, H.-M. Cheng, Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition, Adv. Mater. 21 (2009) 1756–1760. doi:10.1002/adma.200802560. [14] T. Yu, Y.W. Zhu, X.J. Xu, Z.X. Shen, P. Chen, C.-T. Lim, J.T.-L. Thong, C.-H. Sow, Controlled Growth and Field-Emission Properties of Cobalt Oxide Nanowalls, Adv. Mater. 17 (2005) 1595–1599. doi:10.1002/adma.200500322. [15] R. Stratton, Field Emission from Semiconductors, Proc. Phys. Soc. Sect. B. 68 (1955) 746–757. doi:10.1088/0370-1301/68/10/307. [16] X. Fang, Y. Bando, U.K. Gautam, C. Ye, D. Golberg, Inorganic semiconductor nanostructures and their field-emission applications, J. Mater. Chem. 18 (2008) 509–522. doi:10.1039/B712874F. [17] N. de Jonge, M. Allioux, M. Doytcheva, M. Kaiser, K.B.K. Teo, R.G. Lacerda, W.I. Milne, Characterization of the field emission properties of individual thin carbon nanotubes, Appl. Phys. Lett. 85 (2004) 1607–1609. doi:10.1063/1.1786634. [18] K.-Y. Teng, H.-C. Chen, G.-C. Tzeng, C.-Y. Tang, H.-F. Cheng, I.-N. Lin, Bias-enhanced nucleation and growth processes for improving the electron field emission properties of diamond films, J. Appl. Phys. 111 (2012) 053701. doi:10.1063/1.3687918. [19] C. Nützenadel, O.M. Küttel, O. Gröning, L. Schlapbach, Electron field emission from diamond tips prepared by ion sputtering, Appl. Phys. Lett. 69 (1996) 2662–2664. doi:10.1063/1.117551. [20] L. Cui, J. Chen, B. Yang, D. Sun, T. Jiao, RF-PECVD synthesis of carbon nanowalls and their field emission properties, Appl. Surf. Sci. 357 (2015) 1–7. doi:10.1016/j.apsusc.2015.08.252. [21] T. Ikeda, K. Teii, Origin of low threshold field emission from nitrogen-incorporated nanocrystalline diamond films, Appl. Phys. Lett. 94 (2009) 143102. doi:10.1063/1.3115767. [22] P.S. Guo, Z. Sun, S.M. Huang, Y. Sun, Temperature effect on field emission properties and microstructures of polymer-based carbon films, J. Appl. Phys. 98 (2005) 074906. doi:10.1063/1.2084310. [23] J.D. Carey, R.D. Forrest, R.U.A. Khan, S.R.P. Silva, Influence of sp2 clusters on the field emission properties of amorphous carbon thin films, Appl. Phys. Lett. 77 (2000) 2006–2008. doi:10.1063/1.1312202. [24] J.D. Carey, R.D. Forrest, S.R.P. Silva, Origin of electric field enhancement in field emission from amorphous carbon thin films, Appl. Phys. Lett. 78 (2001) 2339–2341. doi:10.1063/1.1366369. [25] B.S. Satyanarayana, A. Hart, W.I. Milne, J. Robertson, Field emission from tetrahedral amorphous carbon, Diam. Relat. Mater. 7 (1998) 656–659. doi:10.1016/S0925-9635(97)00296-3. [26] J.H. Park, J.H. Choi, J.-S. Moon, D.G. Kushinov, J.-B. Yoo, C.Y. Park, J.-W. Nam, C.K. Lee, J.H. Park, D.H. Choe, Simple approach for the fabrication of carbon nanotube field emitter using conducting paste, Carbon. 43 (2005) 698–703. doi:10.1016/j.carbon.2004.10.036. [27] J.-M. Bonard, C. Klinke, K.A. Dean, B.F. Coll, Degradation and failure of carbon nanotube field emitters, Phys. Rev. B. 67 (2003) 115406. doi:10.1103/PhysRevB.67.115406. [28] K.V. Reich, E.D. Eidelman, Effect of electron-phonon interaction on field emission from carbon nanostructures, EPL Europhys. Lett. 85 (2009) 47007. doi:10.1209/0295-5075/85/47007. [29] E.D. Eidelman, A.Y. Vul’, The strong thermoelectric effect in nanocarbon generated by the ballistic phonon drag of electrons, J. Phys. Condens. Matter. 19 (2007) 266210. doi:10.1088/0953-8984/19/26/266210. [30] B.S. Satyanarayana, A. Hart, W.I. Milne, J. Robertson, Field emission from tetrahedral amorphous carbon, Appl. Phys. Lett. 71 (1997) 1430–1432. doi:10.1063/1.119915. [31] O.S. Panwar, M.A. Khan, B.S. Satyanarayana, R. Bhattacharyya, B.R. Mehta, S. Kumar, Ishpal, Effect of high substrate bias and hydrogen and nitrogen incorporation on density of states and field-emission threshold in tetrahedral amorphous carbon films, J. Vac. Sci. Technol. B. 28 (2010) 411–422. doi:10.1116/1.3359586. [32] O.S. Panwar, M.A. Khan, M. Kumar, S.M. Shivaprasad, B.S. Satyanarayana, P.N. Dixit, R. Bhattacharyya, M.Y. Khan, Effect of high substrate bias and hydrogen and nitrogen incorporation on filtered cathodic vacuum arc deposited tetrahedral amorphous carbon films, Thin Solid Films. 516 (2008) 2331–2340. doi:10.1016/j.tsf.2007.09.024. [33] B. Gao, G.Z. Yue, Q. Qiu, Y. Cheng, H. Shimoda, L. Fleming, O. Zhou, Fabrication and Electron Field Emission Properties of Carbon Nanotube Films by Electrophoretic Deposition, Adv. Mater. 13 (2001) 1770–1773. doi:10.1002/1521-4095(200112)13:23<1770::AID-ADMA1770>3.0.CO;2-G. [34] G. Chen, D.H. Shin, S. Kim, S. Roth, C.J. Lee, Improved field emission stability of thin multiwalled carbon nanotube emitters, Nanotechnology. 21 (2009) 015704. doi:10.1088/0957-4484/21/1/015704. [35] E.F. Shevchenko, I.A. Sysoev, S. Prucnal, K. Frenzel, Pulsed magnetron sputtering and ion-induced annealing of carbon films, J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 11 (2017) 305–314. doi:10.1134/S102745101702015X. [36] J.-B. Chen, C.-W. Wang, J. Wang, Y. Li, R.-S. Guo, B.-H. Ma, F. Zhou, W.-M. Liu, Synthesis and field emission of diamond-like carbon nanorods on TiO2/Ti nanotube arrays, Appl. Surf. Sci. 256 (2009) 39–42. doi:10.1016/j.apsusc.2009.07.049. [37] K. Teii, M. Nakashima, Synthesis and field emission properties of nanocrystalline diamond/carbon nanowall composite films, Appl. Phys. Lett. 96 (2010) 023112. doi:10.1063/1.3264075. [38] C. Nützenadel, O.M. Küttel, O. Gröning, L. Schlapbach, Electron field emission from diamond tips prepared by ion sputtering, Appl. Phys. Lett. 69 (1996) 2662–2664. doi:10.1063/1.117551.

Conference: SAMPE 2019 - Charlotte, NC

Publication Date: 2019/05/20

SKU: TP19--1560

Pages: 12

Price: FREE

Get This Paper