Title: Improved Interyarn Friction and Impact Response of Surface Fibrilized Aramid Fabric
Authors: Jalal Nasser, Kelsey Steinke, and Henry A. Sodano
DOI: 10.33599/nasampe/s.19.1511
Abstract: As aramid fabrics grow in use in ballistic applications such as soft body armors, the improvement of their ballistic properties continues to garner great research interest. Of these properties, interyarn friction is considered to be highly important given that it dictates the fabrics’ energy absorption mechanism. In this work, a novel surface fibrilization method of aramid fibers is used to improve the ability of aramid fabric to dissipate ballistic energy. The same method has been previously shown to considerably improve the interfacial and interlaminar properties of aramid fiber polymer matrix reinforced composites. The ballistic performance of bare and fibrilized fabrics was evaluated using tow pullout and impact testing. Fibrilized fabrics showed a 7 times higher pullout energy and a 10 m/s increase in V50 velocity, compared to that of untreated fabrics, while conserving its original strength. Reinforcement mechanisms were finally investigated using scanning electron microscopy imaging. The presented results provide a fast and simple aramid fabric fibrilization technique that enhances the impact response of aramid-based soft body armors.
References: 1. Bhatnagar, Ashock. Lightweight ballistic composites: military and law-enforcement applications. Elsevier, 2006. doi: 10.1016/C2014-0-03657-X. 2. Helliker, Aimée, E. “4 – Ballistic threats: Bullets and fragments,” Lightweight Ballistic Composites (2016): 87–114. doi:10.1016/B978-0-08-100406-7.00004-0. 3. Naik, N. K., and Shrirao, P., “Composite structures under ballistic impact.” Composite Structures, Vol. 66 (Oct. 2004): 579–590. doi:10.1016/J.COMPSTRUCT.2004.05.006. 4. Gay, D., Hoa, S., and Tsai, S. Composite Materials. CRC Press, 2002. doi:10.1201/9781420031683. 5. Chawla, Krishan. K. Composite materials: science and engineering. Springer, 2012. doi: 10.1007/978-0-387-74365-3. 6. Tan, L. Bin, Tse, K. M., Lee, H. P., Tan, V. B. C., and Lim, S. P.“Performance of an advanced combat helmet with different interior cushioning systems in ballistic impact: Experiments and finite element simulations,” International Journal of Impact Engineering, Vol. 50 (Dec. 2012): 99–112. doi:10.1016/J.IJIMPENG.2012.06.003. 7. Improved Barriers to Turbine Engine Fragments: Interim Report II. 1999. 8. Hybrid ballistic fabric. Nov. 1991. 9. Lim, C., Tan, V. B., and Cheong, C. “Perforation of high-strength double-ply fabric system by varying shaped projectiles,” International Journal of Impact Engineering, Vol. 27 (Jul. 2002): 577–591. doi:10.1016/S0734-743X (02)00004-0. 10. Cunniff, Philip. M. “An Analysis of the System Effects in Woven Fabrics Under Ballistic Impact.” Textile Research Journal, Vol. 62 (1992): 495-509. https://doi.org/10.1177/004051759206200902 11. Rao, Y., and Farris, R. J. “A modeling and experimental study of the influence of twist on the mechanical properties of high-performance fiber yarns,” Journal of Applied Polymer Science, Vol. 77 (Aug. 2000): 1938–1949. doi:10.1002/1097-4628(20000829)77:9<1938:AID-APP9>3.0.CO;2-D. 12. Pandya, K. S., Kumar, S., Nair, N. S., and Naik, N. K. “Analytical and experimental studies on ballistic impact behavior of 2D woven fabric composites,” International Journal of Damage Mechanics (2014). doi:10.1177/1056789514531440. 13. Carr, D. J., “Failure mechanisms of yarns subjected to ballistic impact. “Journal of Materials Science Letters, Vol.18 (1999): 585-588· doi: 10.1023/A:1006655301587 14. Briscoe, B. J., and Motamedi, F. “The ballistic impact characteristics of aramid fabrics: The influence of interface friction,” Wear, Vol. 158 (Oct. 1992): 229–247. doi:10.1016/0043-1648(92)90041-6. 15. Briscoe, B. J., and Motamedi, F. “Role of Interfacial Friction and Lubrication in Yarn and Fabric Mechanics,” Textile Research Journal, Vol. 60 (Dec. 1990): 697–708. doi:10.1177/004051759006001201. 16. Gorowara, R. L., Kosik, W. E., McKnight, S. H., and McCullough, R. L. “Molecular characterization of glass fiber surface coatings for thermosetting polymer matrix/glass fiber composites,” Composites Part A: Applied Science and Manufacturing, Vol. 32 (Mar. 2001): 323–329. doi:10.1016/S1359-835X(00)00112-3. 17. LaBarre, E. D., Calderon-Colon, X., Morris, M., Tiffany, J., Wetzel, E., Merkle, A., and Trexler, M. “Effect of a carbon nanotube coating on friction and impact performance of Kevlar,” Journal of Materials Science, Vol. 50 (Aug. 2015): 5431–5442. doi:10.1007/s10853-015-9088-8. 18. Lee, W., Lee, J. U., and Byun, J.-H. “Catecholamine polymers as surface modifiers for enhancing interfacial strength of fiber-reinforced composites,” Composites Science and Technology, Vol. 110 (Apr. 2015): 53–61. doi:10.1016/J.COMPSCITECH.2015.01.021. 19. Patterson, B. A., and Sodano, H. A. “Enhanced Interfacial Strength and UV Shielding of Aramid Fiber Composites through ZnO Nanoparticle Sizing,” ACS Applied Materials & Interfaces, Vol. 8 (Dec. 2016): 33963–33971. doi:10.1021/acsami.6b07555. 20. Qian, H., Bismarck, A., Greenhalgh, E. S., and Shaffer, M. S. P. “Carbon nanotube grafted silica fibres: Characterising the interface at the single fibre level,” Composites Science and Technology, Vol. 70 (Feb. 2010): 393–399. doi:10.1016/j.compscitech.2009.11.014. 21. Bullet resistant fabric and method of manufacture. Jan. 1992. 22. Lee, Y. S., Wetzel, E. D., and Wagner, N. J. “The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid,” Journal of Materials Science, Vol. 38, (2003): 2825–2833. doi:10.1023/A:1024424200221. 23. Egres, R. G., Decker, M. J., Halbach, C. J., Lee, Y. S., Kirkwood, J. E., Kirkwood, K. M., Wagner, N. J., and Wetzel, E. D. “Stab resistance of shear thickening fluid (stf)–Kevlar composites for body armor applications,” Transformational Science and Technology for the Current and Future Force, WORLD SCIENTIFIC (2006): 264–271. doi:10.1142/9789812772572_0034. 24. Lin, Y., Ehlert, G., and Sodano, H. A. “Increased Interface Strength in Carbon Fiber Composites through a ZnO Nanowire Interphase,” Advanced Functional Materials, Vol. 19 (Aug. 2009): 2654–2660. doi:10.1002/adfm.200900011. 25. Malakooti, M. H., Hwang, H.-S., and Sodano, H. A. “Morphology-Controlled ZnO Nanowire Arrays for Tailored Hybrid Composites with High Damping,” ACS Applied Materials & Interfaces, Vol. 7 (Jan. 2015): 332–339. doi:10.1021/am506272c. 26. Galan, U., Lin, Y., Ehlert, G. J., and Sodano, H. A. “Effect of ZnO nanowire morphology on the interfacial strength of nanowire coated carbon fibers,” Composites Science and Technology, Vol. 71 (May 2011): 946–954. doi:10.1016/j.compscitech.2011.02.010. 27. Hwang, H.-S., Malakooti, M. H., and Sodano, H. A. “Tailored interyarn friction in aramid fabrics through morphology control of surface grown ZnO nanowires,” Composites Part A: Applied Science and Manufacturing, Vol. 76 (Sep. 2015): 326–333. doi:10.1016/j.compositesa.2015.06.012. 28. Hwang, H.-S., Malakooti, M. H., Patterson, B. A., and Sodano, H. A. “Increased interyarn friction through ZnO nanowire arrays grown on aramid fabric,” Composites Science and Technology, Vol. 107 (Feb. 2015): 75–81. doi:10.1016/J.COMPSCITECH.2014.12.001. 29. Malakooti, M. H., Hwang, H.-S., Goulbourne, N. C., and Sodano, H. A. “Role of ZnO nanowire arrays on the impact response of aramid fabrics,” Composites Part B: Engineering, Vol. 127 (Oct. 2017): 222–231. doi:10.1016/J.COMPOSITESB.2017.05.084. 30. Malakooti, M. H., Zhou, Z., Spears, J. H., Shankwitz, T. J., and Sodano, H. A. “Biomimetic Nanostructured Interfaces for Hierarchical Composites,” Advanced Materials Interfaces, Vol. 3 (Jan. 2016): 1500404. doi:10.1002/admi.201500404. 31. EHLERT, G. J., LIN, Y., GALAN, U., and SODANO, H. A. “Interaction of ZnO Nanowires with Carbon Fibers for Hierarchical Composites with High Interfacial Strength,” Journal of Solid Mechanics and Materials Engineering, (Vol. 4, 2010): 1687–1698. doi:10.1299/jmmp.4.1687. 32. Nasser, J., Lin, J., and Sodano, H. “High strength fiber reinforced composites with surface fibrilized aramid fibers,” Journal of Applied Physics, Vol. 124 (Jul. 2018): 045305. doi:10.1063/1.5026987. 33. Hwang, H.-S., Malakooti, M. H., Patterson, B. A., and Sodano, H. A. “Increased interyarn friction through ZnO nanowire arrays grown on aramid fabric,” Composites Science and Technology, Vol. 107 (Feb. 2015): 75–81. doi:10.1016/j.compscitech.2014.12.001. 34. Stenzler, J. S., “Impact Mechanics of PMMA/PC Multi-Laminates with Soft Polymer Interlayers,” Dec. 2009. 35. Nilakantan, G., Keefe, M., Wetzel, E. D., Bogetti, T. A., and Gillespie, J. W., “Effect of statistical yarn tensile strength on the probabilistic impact response of woven fabrics,” Composites Science and Technology, Vol. 72 (Jan. 2012): 320–329. doi:10.1016/J.COMPSCITECH.2011.11.021. 36. Seymour, R. B. “High Modulus Polymers,” Applications of Polymers, Boston, MA: Springer US, (1988): 15–15. doi:10.1007/978-1-4684-5448-2_3.
Conference: SAMPE 2019 - Charlotte, NC
Publication Date: 2019/05/20
SKU: TP19--1511
Pages: 14
Price: FREE
Get This Paper