Search

DIGITAL LIBRARY: SAMPE 2019 | CHARLOTTE, NC | MAY 20-23

Get This Paper

In-situ Characterization of Composite Ply-Movement and Manufacturing Defects

Description

Title: In-situ Characterization of Composite Ply-Movement and Manufacturing Defects

Authors: Sandeep Chava, and Sirish Namilae

DOI: 10.33599/nasampe/s.19.1483

Abstract: The ubiquitous usage of polymer matrix composites in aerospace, automobile, and other industries necessitates a comprehensive understanding of manufacturing defects such as delamination, debonding and wrinkling. Investigating the movement of ply interfaces during manufacturing will help understand the fundamental phenomenon that leads to the formation of processing-induced defects. In this paper, the interfacial movement in carbon fiber laminate is characterized in-situ during different stages of curing in a specially designed autoclave with viewports. Plies are laid-up on a cylindrical rod placed on a flat plate to simulate the maximum movement of plies, resulting in the formation of wrinkles. Ply-movement is measured in-situ using Digital Image Correlation (DIC) during the cure cycle. In addition, the resulting defects are characterized post cure using X-Ray Computed Tomography (CT). Preliminary results demonstrate the effectiveness of this approach in examining defects like wrinkles. Results show the formation of a wrinkle due to the out of plane ply movement (0.65 mm) and the evolution of the wrinkle through the curing cycle.

References: 1. Marsh, George. "Airframers exploit composites in battle for supremacy." Reinforced plastics 49, no. 3 (2005): 26-32. https://doi.org/10.1016/s0034-3617(05)00577-1 2. Witik, R.A., Payet, J., Michaud, V., Ludwig, C. and Månson, J.A.E., "Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications". Composites Part A: Applied Science and Manufacturing, 42(11), (2011), pp.1694-1709. https://doi.org/10.1016/j.compositesa.2011.07.024 3. Sapuan, S. M., and M. A. Maleque. "Design and fabrication of natural woven fabric reinforced epoxy composite for household telephone stand." Materials & design 26, no. 1 (2005): 65-71. https://doi.org/10.1016/j.matdes.2004.03.015 4. Phil, E. and C. Soutis, Polymer composites in the aerospace industry. 2014: Elsevier. https://doi.org/10.1016/c2013-0-16303-9 5. Smith, R. A. "Composite defects and their detection." Materials science and engineering 3 (2009): 103-143. 6. Petrescu, R.V., Aversa, R., Akash, B., Corchado, J., Berto, F., Apicella, A. and Petrescu, F.I., "When boeing is dreaming–a review", 2017. https://doi.org/10.3844/jastsp.2017.149.161 7. Heslehurst, Rikard Benton. “Defects and damage in composite materials and structures”, CRC Press, 2014. https://doi.org/10.1201/b16765 8. Allaoui, S., Hivet, G., Soulat, D., Wendling, A., Ouagne, P. and Chatel, S., "Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement". International Journal of Material Forming 7(2), (2014), pp.155-165.. https://doi.org/10.1007/s12289-012-1116-5 9. Croft, K., Lessard, L., Pasini, D., Hojjati, M., Chen, J. and Yousefpour, A. “Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates”. Composites Part A: Applied Science and Manufacturing, 42(5), (2011), pp.484-491. https://doi.org/10.1016/j.compositesa.2011.01.007 10. de Almeida, S.F.M. and Neto, Z.D.S.N. “Effect of void content on the strength of composite laminates”. Composite structures, 28(2), (1994): pp.139-148. https://doi.org/10.1016/0263-8223(94)90044-2 11. Pardoen, Gerard C. "Effect of delamination on the natural frequencies of composite laminates." Journal of composite materials 23.12 (1989): 1200-1215. https://doi.org/10.1177/002199838902301201 12. Zandiatashbar, A., Lee, G.H., An, S.J., Lee, S., Mathew, N., Terrones, M., Hayashi, T., Picu, C.R., Hone, J. and Koratkar, N. “Effect of defects on the intrinsic strength and stiffness of graphene”. Nature communications, 5, (2014): p.3186. https://doi.org/10.1038/ncomms4186 13. Meola, C. and Carlomagno, G.M., “Infrared thermography to evaluate impact damage in glass/epoxy with manufacturing defects”. International Journal of Impact Engineering 67, (2014): pp.1-11. https://doi.org/10.1016/j.ijimpeng.2013.12.010 14. Nelson, J., Cairns, D. and Riddle, T., ‘Manufacturing defects common to composite wind turbine blades: Effects of defects”. In 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Structures Conference 13t, 2011, p. 1756. https://doi.org/10.2514/6.2011-1756 15. Nikishkov, Y., Airoldi, L. and Makeev, A., “Measurement of voids in composites by X-ray Computed Tomography”. Composites Science and Technology, 89, (2013); pp.89-97. https://doi.org/10.1016/j.compscitech.2013.09.019 16. Yin, H., Peng, X., Du, T. and Guo, Z., “Draping of plain woven carbon fabrics over a double-curvature mold”. Composites Science and Technology, 92, (2014): pp.64-69. https://doi.org/10.1016/j.compscitech.2013.12.013 17. Allaoui, S., Cellard, C. and Hivet, G., “Effect of inter-ply sliding on the quality of multilayer interlock dry fabric preforms”. Composites Part A: Applied Science and Manufacturing, 68, (2015): pp.336-345. https://doi.org/10.1016/j.compositesa.2014.10.017 18. Farnand, K., Zobeiry, N., Poursartip, A. and Fernlund, G., “Micro-level mechanisms of fiber waviness and wrinkling during hot drape forming of unidirectional prepreg composites”. Composites Part A: Applied Science and Manufacturing, 103, (2017): pp.168-177. https://doi.org/10.1016/j.compositesa.2017.10.008 19. Dörr, D., Faisst, M., Joppich, T., Poppe, C., Henning, F. and Kärger, L., “Modelling approach for anisotropic inter-ply slippage in finite element forming simulation of thermoplastic UD-tapes”. AIP Conference Proceedings, 2018, (Vol. 1960, No. 1, p. 020005). AIP Publishing. https://doi.org/10.1063/1.5034806 20. ALMS, J.B. and BROWN, R.J., “Aspects of Prepreg Layer Friction on Defect Formation on Thick-Walled Composite Manufacturing”. Proceedings of the American Society for Composites—Thirty-second Technical Conference. 2017 https://doi.org/10.12783/asc2017/15361 21. Abry, J.C., Choi, Y.K., Chateauminois, A., Dalloz, B., Giraud, G. and Salvia, M., “In-situ monitoring of damage in CFRP laminates by means of AC and DC measurements”. Composites Science and Technology, 61(6), (2001): pp.855-864. https://doi.org/10.1016/s0266-3538(00)00181-0 22. Böger, L., Wichmann, M.H., Meyer, L.O. and Schulte, K., “Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix”. Composites Science and Technology, 68(7-8), (2008): pp.1886-1894. https://doi.org/10.1016/j.compscitech.2008.01.001 23. Thostenson, E.T. and Chou, T.W., “Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks”. Nanotechnology, 19(21), (2008): p.215713. https://doi.org/10.1088/0957-4484/19/21/215713 24. Namilae, S., Li, J. and Chava, S., “Improved piezoresistivity and damage detection application of hybrid carbon nanotube sheet-graphite platelet nanocomposites”. Mechanics of Advanced Materials and Structures, (2018): pp.1-9. https://doi.org/10.1080/15376494.2018.1432812 25. Stock, S. R. "X-ray microtomography of materials." International Materials Reviews 44.4 (1999): 141-164. https://doi.org/10.1179/095066099101528261 26. Croom, B., Wang, W.M., Li, J. and Li, X., “Unveiling 3D deformations in polymer composites by coupled micro x-ray computed tomography and volumetric digital image correlation”. Experimental Mechanics, 56(6), (2016): pp.999-1016. https://doi.org/10.1007/s11340-016-0140-7 27. Senck, S., Scheerer, M., Revol, V., Dobes, K., Plank, B. and Kastner, J., “Non-destructive evaluation of defects in polymer matrix composites for aerospace applications using x-ray Talbot-Lau interferometry and micro CT”. 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2017, (p. 0355). https://doi.org/10.2514/6.2017-0355 28. Kim, H.S., Bae, H.S., Yu, J. and Kim, S.Y., “Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets”. Scientific reports, 6, 2016, p.26825. https://doi.org/10.1038/srep26825 29. Olivier, Philippe A. "A note upon the development of residual curing strains in carbon/epoxy laminates. Study by thermomechanical analysis." Composites Part A: Applied Science and Manufacturing 37.4 (2006): 602-616. https://doi.org/10.1016/j.compositesa.2005.05.006 30. Stefaniak, D., Kappel, E., Spröwitz, T. and Hühne, C., “Experimental identification of process parameters inducing warpage of autoclave-processed CFRP parts”. Composites Part A: Applied Science and Manufacturing, 43(7), (2012): pp.1081-1091. https://doi.org/10.1016/j.compositesa.2012.02.013 31. Morris, S.R. and Sun, C.T., “An investigation of interply slip behaviour in AS4/PEEK at forming temperatures”. Composites Manufacturing, 5(4), (1994): pp.217-224. https://doi.org/10.1016/0956-7143(94)90136-8 32. Wisnom, M.R., Gigliotti, M., Ersoy, N., Campbell, M. and Potter, K.D., “Mechanisms generating residual stresses and distortion during manufacture of polymer–matrix composite structures”. Composites Part A: Applied Science and Manufacturing, 37(4), (2006): pp.522-529. https://doi.org/10.1016/j.compositesa.2005.05.019 33. Hanna, E.G., Poitou, A. and Casari, P., “MODELING THE INTERPLY SLIP DURING FORMING OF THERMOPLASTIC LAMINATES”. Materials Physics and Mechanics, 40, (2018): pp.22-36. 34. Cho, M., Kim, M.H., Choi, H.S., Chung, C.H., Ahn, K.J. and Eom, Y.S., “A study on the room-temperature curvature shapes of unsymmetric laminates including slippage effects”. Journal of composite materials, 32(5), (1998): pp.460-482. https://doi.org/10.1177/002199839803200503 35. Topac, O.T., Gozluklu, B., Gurses, E. and Coker, D., “Experimental and computational study of the damage process in CFRP composite beams under low-velocity impact”. Composites Part A: Applied Science and Manufacturing, 92, (2017): pp.167-182. https://doi.org/10.1016/j.compositesa.2016.06.023 36. Koohbor, B., Mallon, S., Kidane, A. and Sutton, M.A., “A DIC-based study of in-plane mechanical response and fracture of orthotropic carbon fiber reinforced composite”. Composites Part B: Engineering, 66, (2014): pp.388-399. https://doi.org/10.1016/j.compositesb.2014.05.022 37. Hallander, P., Akermo, M., Mattei, C., Petersson, M. and Nyman, T., “An experimental study of mechanisms behind wrinkle development during forming of composite laminates”. Composites Part A: Applied Science and Manufacturing, 50, (2013): pp.54-64. https://doi.org/10.1016/j.compositesa.2013.03.013 38. Breuer, U., Neitzel, M., Ketzer, V. and Reinicke, R., “Deep drawing of fabric‐reinforced thermoplastics: Wrinkle formation and their reduction”. Polymer composites, 17(4), (1996): pp.643-647. https://doi.org/10.1002/pc.10655 39. Potter, K. D. "Understanding the origins of defects and variability in composites manufacture." International Conference on Composite Materials (ICCM)-17, Edinburgh, UK. 2009.

Conference: SAMPE 2019 - Charlotte, NC

Publication Date: 2019/05/20

SKU: TP19--1483

Pages: 11

Price: FREE

Get This Paper