Get This Paper

Microstructure-Sensitive ICME Workflows for Fatigue Critical Applications


Title: Microstructure-Sensitive ICME Workflows for Fatigue Critical Applications

Authors: Krzysztof S. Stopka, Gary Whelan, and David L. McDowell

DOI: 10.33599/nasampe/s.19.1414

Abstract: Fatigue cracks form and grow in fatigue critical structural alloys that are relevant to Naval aviation applications from nucleant grains, phases, or constituent particles in the high cycle fatigue (HCF) regime. To enable progress in configuring Integrated Computational Materials Engineering (ICME) towards addressing improved fleet performance, we present a multilevel scripted ICME workflow that employs microstructure-sensitive simulations. An inductive design exploration framework considers various sources of uncertainty to inform robust decisions regarding materials development necessary to achieve desired performance of fatigue critical components, given accessible process paths and resulting microstructures. Uncertainty propagation through model chains (whether models are surrogates, empirical, or based on simulation) is considered. Digital statistical volume element representations of microstructure are employed, with structure-property relations based on microstructure-sensitive computational fatigue modeling using the crystal plasticity finite element method, addressing sensitivity to microstructure resulting from process path including both intrinsic (grain/phase size, shape and orientation distributions) and extrinsic (residual stresses, surface roughness, nonmetallic inclusions or pores) features. The digital workflow considers extreme value (minimum property) fatigue response as the primary performance requirement. The framework is exercised to explore available microstructures for α-β Ti-6Al-4V. The work has potential to impact development of new and improved fatigue critical material systems relevant to naval applications.

References: [1] R. I. Stephens, A. Fatemi, R. R. Stephens, and H. O. Fuchs, Metal fatigue in engineering. John Wiley & Sons, 2000. [2] D. L. McDowell, "Basic issues in the mechanics of high cycle metal fatigue", International Journal of Fracture, 80 (1996) 103-145. [3] J. H. Panchal, S. R. Kalidindi, and D. L. Mcdowell, "Key computational modeling issues in integrated computational materials engineering", Computer Aided Design, 45 (1) (2013) 4-25. [4] Abaqus (2017) (accessed April 18, 2017). [5] W. D. Musinski and D. L. McDowell, "Microstructure-sensitive probabilistic modeling of hcf crack initiation and early crack growth in ni-base superalloy in100 notched components", International Journal of Fatigue, 37 (2012) 41-53. [6] C. P. Przybyla and D. L. McDowell, "Microstructure-sensitive extreme value probabilities for high cycle fatigue of ni-base superalloy in100", International Journal of Plasticity, 26 (3) (2010) 372-394. [7] M. Shenoy, J. Zhang, and D. L. McDowell, "Estimating fatigue sensitivity to polycrystalline ni-base superalloy microstructures using a computational approach", Fatigue & Fracture of Engineering Materials & Structures, 30 (10) (2007) 889-904. [8] N. Salajegheh and D. L. McDowell, "Microstructure-sensitive weighted probability approach for modeling surface to bulk transition of high cycle fatigue failures dominated by primary inclusions", International Journal of Fatigue, 59 (2014) 188-199. [9] W. D. Musinski and D. L. McDowell, "Simulating the effect of grain boundaries on microstructurally small fatigue crack growth from a focused ion beam notch through a three-dimensional array of grains", Acta Materialia, 112 (2016) 20-39. [10] W. D. Musinski and D. L. McDowell, "On the eigenstrain application of shot-peened residual stresses within a crystal plasticity framework: Application to ni-base superalloy specimens", International Journal of Mechanical Sciences, 100 (2015) 195-208. [11] R. Prasannavenkatesan, J. Zhang, D. L. McDowell, G. B. Olson, and H.-J. Jou, "3d modeling of subsurface fatigue crack nucleation potency of primary inclusions in heat treated and shot peened martensitic gear steels", International Journal of Fatigue, 31 (7) (2009) 1176-1189. [12] N. Salajegheh, R. Prasannavenkatesan, D. L. McDowell, G. B. Olson, and H.-J. Jou, "Finite element simulation of shielding/intensification effects of primary inclusion clusters in high strength steels under fatigue loading", 136 (2014)] [13] C. Hennessey, G. M. Castelluccio, and D. L. McDowell, "Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for al 7075-t6", Materials Science and Engineering: A, 687 (2017) 241-248. [14] C. D. Hennessey, Modeling microstructurally small crack growth in al 7075-t6, Masters Thesis, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, (2015). [15] K. Gall, M. F. Horstemeyer, B. W. Degner, D. L. McDowell, and J. Fan, "On the driving force for fatigue crack formation from inclusions and voids in a cast a356 aluminum alloy", International Journal of Fracture, 108 (3) (2001) 207-233. [16] Y. Xue, D. L. McDowell, M. Horstemeyer, M. H. Dale, and J. Jordon, "Microstructure-based multistage fatigue modeling of aluminum alloy 7075-t651", 74 (2007) 2810-2823. [17] C. P. Przybyla and D. L. McDowell, "Simulated microstructure-sensitive extreme value probabilities for high cycle fatigue of duplex ti–6al–4v", International Journal of Plasticity, 27 (12) (2011) 1871-1895. [18] C. P. Przybyla and D. L. McDowell, "Microstructure-sensitive extreme-value probabilities of high-cycle fatigue for surface vs. Subsurface crack formation in duplex ti–6al–4v", Acta Materialia, 60 (1) (2012) 293-305. [19] G. B. Olson, "Computational design of hierarchically structured materials", Science, 277 (5330) (1997) 1237-1242. [20] A. Goulding, J. F. Leung, and R. Neu, "Communicating materials systems knowledge through processing-structure-propertiesperformance (pspp) maps", Journal of Materials Education, 40 (1-2) (2018) 1-18. [21] G. Lütjering and J. C. Williams, Beta alloys. Springer, 2007. [22] M. A. Groeber and M. A. Jackson, "Dream.3d: A digital representation environment for the analysis of microstructure in 3d", Integrating Materials and Manufacturing Innovation, 3 (1) (2014) 1-17. [23] M. Diehl, M. Groeber, C. Haase, D. A. Molodov, F. Roters, and D. Raabe, "Identifying structure–property relationships through dream.3d representative volume elements and damask crystal plasticity simulations: An integrated computational materials engineering approach", JOM, 69 (5) (2017) 848-855. [24] P. A. Shade, M. A. Groeber, J. C. Schuren, and M. D. Uchic, "Experimental measurement of surface strains and local lattice rotations combined with 3d microstructure reconstruction from deformed polycrystalline ensembles at the micro-scale", Integrating Materials and Manufacturing Innovation, 2 (1) (2013) 5. [25] S. D. Sintay, M. A. Groeber, and A. D. Rollett, "3d reconstruction of digital microstructures," in Electron backscatter diffraction in materials science, A. J. Schwartz, M. Kumar, B. L. Adams, and D. P. Field, Eds. Boston, MA: Springer US, 2009, pp. 139-153. [26] T. Lacy, R. Talreja, and D. L. McDowell, Effects of damage distribution on evolution. 1997, pp. 131-149. [27] D. L. McDowell, "Damage mechanics and metal fatigue: A discriminating perspective", International Journal of Damage Mechanics, 8 (4) (1999) 376-403. [28] T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, "Determination of the size of the representative volume element for random composites: Statistical and numerical approach", International Journal of Solids and Structures, 40 (13) (2003) 3647-3679. [29] S. M. Qidwai et al., "Estimating the response of polycrystalline materials using sets of weighted statistical volume elements", Acta Materialia, 60 (13) (2012) 5284-5299. [30] M. Zhang, J. Zhang, and D. L. McDowell, "Microstructure-based crystal plasticity modeling of cyclic deformation of ti–6al–4v", International Journal of Plasticity, 23 (8) (2007) 1328-1348. [31] B. D. Smith, D. S. Shih, and D. L. McDowell, "Cyclic plasticity experiments and polycrystal plasticity modeling of three distinct ti alloy microstructures", International Journal of Plasticity, 101 (2018) 1-23. [32] J. R. Mayeur and D. L. McDowell, "A three-dimensional crystal plasticity model for duplex ti–6al–4v", International Journal of Plasticity, 23 (9) (2007) 1457-1485. [33] D. F. Socie and G. B. Marquis, Multiaxial fatigue. Society of Automotive Engineers Warrendale, PA, 2000. [34] M. W. Brown and K. J. Miller, "A theory for fatigue failure under multiaxial stress-strain conditions", Proceedings of the Institution of Mechanical Engineers, 187 (1) (1973) 745-755. [35] A. Fatemi and D. F. Socie, "A critical plane approach to multiaxial fatigue damage including out‐of‐phase loading", Fatigue & Fracture of Engineering Materials & Structures, 11 (3) (1988) 149-165. [36] D. L. McDowell, "Multiaxial fatigue strength," in Fatigue and fracture, A. S. M. H. Committee, Ed.: ASM International, 1996. [37] D. L. McDowell and J.-Y. Berard, "A δj-based approach to biaxial fatigue", Fatigue & Fracture of Engineering Materials & Structures, 15 (8) (1992) 719-741. [38] G. M. Castelluccio and D. L. McDowell, "Assessment of small fatigue crack growth driving forces in single crystals with and without slip bands", International Journal of Fracture, 176 (1) (2012) 49-64. [39] A. Pineau, D. L. McDowell, E. P. Busso, and S. D. Antolovich, "Failure of metals ii: Fatigue", Acta Materialia, 107 (2016) 484-507. [40] D. L. McDowell and F. P. E. Dunne, "Microstructure-sensitive computational modeling of fatigue crack formation", International Journal of Fatigue, 32 (9) (2010) 1521-1542. [41] G. M. Castelluccio and D. L. McDowell, "Mesoscale modeling of microstructurally small fatigue cracks in metallic polycrystals", Materials Science and Engineering: A, 598 (2014) 34-55. [42] C. J. Szczepanski, S. K. Jha, J. M. Larsen, and J. W. Jones, "Microstructural influences on very-high-cycle fatigue-crack initiation in ti-6246", Metallurgical and Materials Transactions A, 39 (12) (2008) 2841-2851. [43] M. Peters, A. Gysler, and G. LÜtjering, "Influence of texture on fatigue properties of ti-6al-4v", Metallurgical and Materials Transactions A, 15 (8) (1984) 1597-1605. [44] G. Lütjering and J. C. Williams, Titanium. Springer, 2007. [45] X. Du and W. Chen, "Efficient uncertainty analysis methods for multidisciplinary robust design", AIAA Journal, 40 (3) (2002) 545-552. [46] M. McDonald and S. Mahadevan, "Uncertainty quantification and propagation in multidisciplinary analysis and optimization," in 12th aiaa/issmo multidisciplinary analysis and optimization conference(Multidisciplinary analysis optimization conferences: American Institute of Aeronautics and Astronautics, 2008. [47] H.-J. Choi, D. L. McDowell, J. K. Allen, and F. Mistree, "An inductive design exploration method for hierarchical systems design under uncertainty", Engineering Optimization, 40 (4) (2008) 287-307. [48] P. C. Kern, M. W. Priddy, B. D. Ellis, and D. L. McDowell, "Pydem: A generalized implementation of the inductive design exploration method", Materials & Design, 134 (Supplement C) (2017) 293-300. [49] S. Roy, S. Suwas, S. Tamirisakandala, D. B. Miracle, and R. Srinivasan, "Development of solidification microstructure in boron-modified alloy ti–6al–4v–0.1b", Acta Materialia, 59 (14) (2011) 5494-5510. [50] Y. C. Wang and T. G. Langdon, "Influence of phase volume fractions on the processing of a ti–6al–4v alloy by high-pressure torsion", Materials Science and Engineering: A, 559 (2013) 861-867. [51] N. Gey and M. Humbert, "Characterization of the variant selection occurring during the α→β→α phase transformations of a cold rolled titanium sheet", Acta Materialia, 50 (2) (2002) 277-287.

Conference: SAMPE 2019 - Charlotte, NC

Publication Date: 2019/05/20

SKU: TP19--1414

Pages: 15

Price: FREE

Get This Paper