Title: Pyrolyzed Polydopamine (py-pda) Functionalized Carbon Nanotubes and their Carbon/Carbon Composite with Improved Mechanical and Electrical Properties
Authors: Songlin Zhang, Ayou Hao, Nam Nguyen, Abiodun Oluwalowo, Juhil Mahendra Ahir Ahir, Zhe Liu, Yourri Dessureault, Jin Gyu Park, and Richard Liang
DOI: 10.33599/nasampe/s.19.1510
Abstract: Carbon nanotube/carbon (CNT/C) composites show potential for lightweight structural materials and non-metal electrical conductors for aerospace, military, and other industries where the combination of lightweight, high strength and excellent conductivity are required. Numerous research attempts have been reported to fabricate CNT/C composite focusing on high CNT alignment and dense carbon matrix. However, simultaneous improvements for mechanically strengthening and electrically improving properties of strength and conductivity in materials still presents a great challenge. In this study, pyrolyzed polydopamine (py-PDA) with selected surface treatments is introduced as an interface enhancer between CNTs and carbon matrix. Due to the presence of py-PDA, the effective physical interlocking and conductive pathways are rebuilt at the interface area between CNTs and carbon matrix, resulting in better load transfer and electron transport. The CNT/py-PDA/C composite fibers demonstrated remarkable improvements in electrical conductivity (2.1 × 103 S cm-1) and tensile strength (up to 727 MPa), which should prove to be vastly advantageous as compared to the previously reported CNT/C composites. The outstanding thermal stability of fully carbonized materials is also an attractive feature. Coupled with scalable manufacturing methods, these integrated characteristics of CNT/py-PDA/C composite fiber can potentially have broad applications for lightweight structural materials and non-metal conductors.
References: 1. H. G. Maahs. Carbon-carbon composites: Emerging materials for hypersonic flight. 1989 [cited 2018 November 10,]; Available from: https://ntrs.nasa.gov/search.jsp?R=19900016764. 2. E. Savage, Carbon-carbon composites. 2012: Springer Science & Business Media 3. S. Chand, Review carbon fibers for composites. J. Mater. Sci. , 2000. 35(6): pp. 1303-1313. 4. X. Huang, Fabrication and Properties of Carbon Fibers. Materials, 2009. 2(4): pp. 2369, DOI: https://doi.org/10.3390/ma2042369. 5. Y. Ma, S. Jin, and S. Zhang, Effect of trigger on crashworthiness of unidirectional carbon fibre reinforced polyamide 6 composites. Plastics, Rubber and Composites, 2018. 47(5): pp. 208-220, DOI: 10.1080/14658011.2018.1466502. 6. Y. Ma, L. Yu, S. Jin, et al., Effect of interfacial coating and testing conditions on the flexural performance of carbon woven fibre-reinforced polyamide laminates. Plastics, Rubber and Composites, 2018. 48(2): pp. 57-65, DOI: 10.1080/14658011.2018.1547029. 7. Z. Li, Z. Liu, H. Sun, et al., Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene. Chem. Rev., 2015. 115(15): pp. 7046-7117, DOI: 10.1021/acs.chemrev.5b00102. 8. D. Janas and K. K. Koziol, Carbon nanotube fibers and films: synthesis, applications and perspectives of the direct-spinning method. Nanoscale, 2016. 8(47): pp. 19475-19490, DOI: 10.1039/c6nr07549e. 9. J. Di, X. Zhang, Z. Yong, et al., Carbon-Nanotube Fibers for Wearable Devices and Smart Textiles. Adv. Mater., 2016. 28(47): pp. 10529-10538, DOI: 10.1002/adma.201601186. 10. W. Lu, M. Zu, J. H. Byun, et al., State of the art of carbon nanotube fibers: opportunities and challenges. Adv. Mater., 2012. 24(14): pp. 1805-33, DOI: 10.1002/adma.201104672. 11. Q. W. Li, Y. Li, X. F. Zhang, et al., Structure-Dependent Electrical Properties of Carbon Nanotube Fibers. Adv. Mater., 2007. 19(20): pp. 3358-3363, DOI: 10.1002/adma.200602966. 12. N. Nguyen, S. Zhang, A. Oluwalowo, et al., High-Performance and Lightweight Thermal Management Devices by 3D Printing and Assembly of Continuous Carbon Nanotube Sheets. ACS Appl Mater Interfaces, 2018. 10(32): pp. 27171-27177, DOI: 10.1021/acsami.8b07556. 13. S. Zhang, B. E. Leonhardt, N. Nguyen, et al., Roll-to-roll continuous carbon nanotube sheets with high electrical conductivity. RSC Advances, 2018. 8(23): pp. 12692-12700, DOI: 10.1039/c8ra01212a. 14. S. Zhang, J. G. Park, N. Nguyen, et al., Ultra-high conductivity and metallic conduction mechanism of scale-up continuous carbon nanotube sheets by mechanical stretching and stable chemical doping. Carbon, 2017. 125: pp. 649-658, DOI: https://doi.org/10.1016/j.carbon.2017.09.089. 15. Z. Liang, J. G. Park, S. Zhang, et al., Carbon nanoscale fiber-based materials and methods. 2018: U.S. 16. T. V. Sreekumar, T. Liu, B. G. Min, et al., Polyacrylonitrile single‐walled carbon nanotube composite fibers. Adv. Mater., 2004. 16(1): pp. 58-61, DOI: https://doi.org/10.1002/adma.200305456. 17. Z. Zhou, X. Wang, S. Faraji, et al., Mechanical and electrical properties of aligned carbon nanotube/carbon matrix composites. Carbon, 2014. 75: pp. 307-313, DOI: 10.1016/j.carbon.2014.04.008. 18. Y. Jin, Y. Zhang, Q. Zhang, et al., Multi-walled carbon nanotube-based carbon/carbon composites with three-dimensional network structures. Nanoscale, 2013. 5(13): pp. 6181-6186, DOI: 10.1039/c3nr01069d. 19. X. Lin, W. Zhao, W. Zhou, et al., Epitaxial Growth of Aligned and Continuous Carbon Nanofibers from Carbon Nanotubes. ACS Nano, 2017. 11(2): pp. 1257-1263, DOI: 10.1021/acsnano.6b04855. 20. R. Djugum and K. Sharp, The fabrication and performance of C/C composites impregnated with TaC filler. Carbon, 2017. 115: pp. 105-115, DOI: 10.1016/j.carbon.2016.12.019. 21. X. Zhang, X. Li, G. Yuan, et al., Large diameter pitch-based graphite fiber reinforced unidirectional carbon/carbon composites with high thermal conductivity densified by chemical vapor infiltration. Carbon, 2017. 114: pp. 59-69, DOI: 10.1016/j.carbon.2016.11.080. 22. J. Lee, T. Kim, Y. Jung, et al., High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration. Nanoscale, 2016. 8(45): pp. 18972-18979, DOI: 10.1039/c6nr06479e. 23. S. Faraji, O. Yildiz, C. Rost, et al., Radial growth of multi-walled carbon nanotubes in aligned sheets through cyclic carbon deposition and graphitization. Carbon, 2017. 111: pp. 411-418, DOI: 10.1016/j.carbon.2016.10.012. 24. S. Faraji, K. Stano, C. Rost, et al., Structural annealing of carbon coated aligned multi-walled carbon nanotube sheets. Carbon, 2014. 79: pp. 113-122, DOI: 10.1016/j.carbon.2014.07.049. 25. Y. Han, S. Li, F. Chen, et al., Multi-scale alignment construction for strong and conductive carbon nanotube/carbon composites. Materials Today Communications, 2016. 6: pp. 56-68, DOI: 10.1016/j.mtcomm.2015.12.002. 26. X. Li, L. Ci, S. Kar, et al., Densified aligned carbon nanotube films via vapor phase infiltration of carbon. Carbon, 2007. 45(4): pp. 847-851, DOI: 10.1016/j.carbon.2006.11.010. 27. J. G. Park, N. G. Yun, Y. B. Park, et al., Single-walled carbon nanotube buckypaper and mesophase pitch carbon/carbon composites. Carbon, 2010. 48(15): pp. 4276-4282, DOI: 10.1016/j.carbon.2010.07.037. 28. V. Thiagarajan, X. Wang, P. D. Bradford, et al., Stabilizing carbon nanotube yarns using chemical vapor infiltration. Compos. Sci. Technol., 2014. 90: pp. 82-87, DOI: 10.1016/j.compscitech.2013.10.008. 29. S. Y. Moon and W. S. Kim, High mechanical properties of super aligned carbon nanocomposite by polyurethane based crosslinking molecules. Compos. Sci. Technol., 2018. 161: pp. 100-106, DOI: 10.1016/j.compscitech.2018.04.011. 30. J. Liu, W. Gong, Y. Yao, et al., Strengthening carbon nanotube fibers with semi-crystallized polyvinyl alcohol and hot-stretching. Compos. Sci. Technol., 2018. 164: pp. 290-295, DOI: 10.1016/j.compscitech.2018.06.003. 31. X. Zhang, L. Yang, and H. Liu, Enhancements in mechanical and electrical properties of carbon nanotube films by SiC and C matrix bridging. J. Mater. Sci. , 2018. 53(15): pp. 11027-11037, DOI: 10.1007/s10853-018-2385-2. 32. S. Zhang, A. Hao, N. Nguyen, et al., Carbon nanotube/carbon composite fiber with improved strength and electrical conductivity via interface engineering. Carbon, 2019. 144: pp. 628-638, DOI: https://doi.org/10.1016/j.carbon.2018.12.091. 33. T. Ma, H. L. Gao, H. P. Cong, et al., A Bioinspired Interface Design for Improving the Strength and Electrical Conductivity of Graphene-Based Fibers. Adv. Mater., 2018. 30(15): pp. 1706435, DOI: 10.1002/adma.201706435. 34. S. Ryu, J. B. Chou, K. Lee, et al., Direct Insulation-to-Conduction Transformation of Adhesive Catecholamine for Simultaneous Increases of Electrical Conductivity and Mechanical Strength of CNT Fibers. Adv. Mater., 2015. 27(21): pp. 3250-3255, DOI: 10.1002/adma.201500914. 35. H. Kim, R. Jalili, G. M. Spinks, et al., High-strength graphene and polyacrylonitrile composite fiber enhanced by surface coating with polydopamine. Compos. Sci. Technol., 2017. 149: pp. 280-285, DOI: 10.1016/j.compscitech.2017.05.029. 36. Y. Liu, K. Ai, and L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev., 2014. 114(9): pp. 5057-5115, DOI: 10.1021/cr400407a. 37. X. Yu, H. Fan, Y. Liu, et al., Characterization of Carbonized Polydopamine Nanoparticles Suggests Ordered Supramolecular Structure of Polydopamine. Langmuir, 2014. 30(19): pp. 5497-5505, DOI: 10.1021/la500225v. 38. R. Li, K. Parvez, F. Hinkel, et al., Bioinspired Wafer-Scale Production of Highly Stretchable Carbon Films for Transparent Conductive Electrodes. Angew. Chem. Int. Ed., 2013. 125(21): pp. 5645-5648, DOI: doi:10.1002/ange.201300312. 39. H. Li, Y. V. Aulin, L. Frazer, et al., Structure Evolution and Thermoelectric Properties of Carbonized Polydopamine Thin Films. ACS Appl. Mater. Interfaces, 2017. 9(8): pp. 6655-6660, DOI: 10.1021/acsami.6b15601. 40. http://www.nanocomptech.com/. [cited 2018 November 10,]. 41. R. Senga, T. Pichler, Y. Yomogida, et al., Direct Proof of a Defect-Modulated Gap Transition in Semiconducting Nanotubes. Nano Lett., 2018. 18(6): pp. 3920-3925, DOI: 10.1021/acs.nanolett.8b01284. 42. S. Jiang, P.-X. Hou, M.-L. Chen, et al., Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Science Advances, 2018. 4(5): pp. 9264, DOI: 10.1126/sciadv.aap9264.
Conference: SAMPE 2019 - Charlotte, NC
Publication Date: 2019/05/20
SKU: TP19--1510
Pages: 15
Price: FREE
Get This Paper