Get This Paper

Virtual Comissioning of Manufacturing System Intelligent Control


Title: Virtual Comissioning of Manufacturing System Intelligent Control

Authors: Kaishu Xia, Christopher Sacco, Max Kirkpatrick, Ramy Harik, and Abdel-Moez Bayoumi

DOI: 10.33599/nasampe/s.19.1403

Abstract: Smart manufacturing systems seek to provide adaptive intelligent strategies to manufacturing practitioners in response to environmental changes, system prognosis, and optimal solution identification. For large scale manufacturing processes, their control methodologies are expensive to train, test and develop. Virtual Commissioning, as a digital transformation method, offers a data-driven approach to automate manufacturing system knowledge so that a digital twin can be developed to visually represent manufacturing plants, numerically simulate robot behaviors, predict system faults and adaptively control manipulated variables. In this work, integrating a Machine Learning agent into the Virtual Commissioning platform Siemens Technomatix Process Simulate further expands the usage of the digital twin by training and verifying intelligent control algorithms before pushing them to the physical world for implementation. This is accomplished by transferring data between the Siemens Process Simulate Software Development Kit and Google’s TensorFlow framework to implement a Reinforcement Learning-based dynamic scheduling algorithm on a virtual manufacturing cell. For future development, control via an industrial controller will allow communication between the digital world and physical manufacturing plant so that synchronous control can be achieved. The developed control algorithms are expected to assign tasks, schedule work, generate optimal path solutions and demonstrate control robustness.

References: 1. Harik, R., Hachem, W. E., Medini, K., & Bernard, A. (2015). Towards a holistic sustainability index for measuring sustainability of manufacturing companies. International Journal of Production Research, 53(13), 4117-4139. doi:10.1080/00207543.2014.993773 2. Saidy, C., Panavas, L., Harik, R., Bayoumi, A., & Khoury, J. (2017). Development of a Part Criticality Index in Inventory Management. Product Lifecycle Management and the Industry of the Future IFIP Advances in Information and Communication Technology,184-195. doi:10.1007/978-3-319-72905-3_17 3. Harik, R., Bayoumi, A. M., Panavas, L., Wilson, Z., Saidy, C., & Pinna, C. (2018). Literature review of current practices of suppliers assessment and valuation of decisions regarding underperforming suppliers. International Journal of Product Lifecycle Management, 11(3), 245. doi:10.1504/ijplm.2018.10015951 4. Hoffmann, P., Maksoud, T. M., Schumann, R., & Premier, G. C. (2010). Virtual Commissioning Of Manufacturing Systems A Review And New Approaches For Simplification. ECMS 2010 Proceedings Edited by A Bargiela S A Ali D Crowley E J H Kerckhoffs. doi:10.7148/2010-0175-0181 5. Guerrero, L. V., López, V. V., & Mejía, J. E. (2014). Virtual Commissioning with Process Simulation (Tecnomatix). Computer-Aided Design and Applications, 11(Sup1). doi:10.1080/16864360.2014.914400 6. Hoffman, P. (2016). On virtual commissioning of manufacturing systems. Great Britain: University of South Wales. 7. HALMSJÖ, J., & FÄLT, J. (2016). Emulation of a production cell Developing a Virtual Commissioning model in a concurrent environment. 8. Konstantinov, S., Ahmad, M., Ananthanarayan, K., & Harrison, R. (2017). The Cyber-physical E-machine Manufacturing System: Virtual Engineering for Complete Lifecycle Support. Procedia CIRP,63, 119-124. doi:10.1016/j.procir.2017.02.035 9. Harrison, R., Vera, D., & Ahmad, B. (2016). Engineering Methods and Tools for Cyber–Physical Automation Systems. Proceedings of the IEEE,104(5), 973-985. doi:10.1109/jproc.2015.2510665 10. Tao, F., & Zhang, M. (2017). Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing. IEEE Access,5, 20418-20427. doi:10.1109/access.2017.2756069 11. Tao, F., Zhang, H., Liu, A., & Nee, A. (2018). Digital Twin in Industry: State-of-the-Art. IEEE Transactions on Industrial Informatics, 1-1. doi:10.1109/TII.2018.2873186 12. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M.A. (2013). Playing Atari with Deep Reinforcement Learning. CoRR, abs/1312.5602. 13. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S. & Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518, 529--533. 14. Jaderberg, M., Mnih, V., Czarnecki, W., Schaul, T., Leibo, J.Z., Silver, D., & Kavukcuoglu, K. (2016). Reinforcement Learning with Unsupervised Auxiliary Tasks. CoRR, abs/1611.05397. 15. Lewis, F., Yesildirek, A., & Liu, K. (1996). Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Transactions on Neural Networks, 7(2), 388-399. doi:10.1109/72.485674 16. Riedmiller, M.A., Hafner, R., Lampe, T., Neunert, M., Degrave, J., Wiele, T.V., Mnih, V., Heess, N., & Springenberg, J.T. (2018). Learning by Playing - Solving Sparse Reward Tasks from Scratch. ICML. 17. Ou, X., Chang, Q., & Chakraborty, N. (2019). Simulation study on reward function of reinforcement learning in gantry work cell scheduling. Journal of Manufacturing Systems,50, 1-8. doi:10.1016/j.jmsy.2018.11.005.

Conference: SAMPE 2019 - Charlotte, NC

Publication Date: 2019/05/20

SKU: TP19--1403

Pages: 10

Price: FREE

Get This Paper