Title: Evolution of Composite Defects During Manufacturing: Wrinkles & Delamination
Authors: Sandeep Chava and Sirish Namilae
DOI: 10.33599/nasampe/s.20.0071
Abstract: The ubiquitous usage of polymer matrix composites in many applications demands a comprehensive understanding of composite interfaces, which critically affect both the manufacturing processes and the deformation mechanisms. Processing-induced defects in composite structures such as wrinkles and delaminations are primarily a result of inter-ply interfacial movement during manufacturing. In this paper, a new in-situ experimental approach and an ex-situ X-Ray characterization are proposed for developing a fundamental understanding of ply interfaces during composite manufacturing. A carbon fiber laminate is cured in a specially designed autoclave with viewports with plies laid-up on a mold with cylindrical tooling setup to simulate the maximum movement of plies, resulting in the formation of wrinkles and delamination. Three cylindrical tools of radius 9.5mm, 12.7mm and 15.9mm are used in preparing three different molds for the layup. Ply-movement is measured in-situ using Digital Image Correlation (DIC) during the cure cycle through the viewports of the autoclave. In addition, the resulting defects are characterized post-cure using X-Ray Micro-CT. Results show that at wrinkle the maximum out-of-plane movement of 1.32 mm is happening for a 4-ply unidirectional laminate laid up on a mold with 15.9mm tool diameter.
References: 1. Marsh, G. (2005). Airframers exploit composites in battle for supremacy. Reinforced plastics, 49(3), 26-32. https://doi.org/10.1016/S0034-3617(05)00577-1 2. Witik, R. A., Payet, J., Michaud, V., Ludwig, C., & Månson, J. A. E. (2011). Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications. Composites Part A: Applied Science and Manufacturing, 42(11), 1694-1709. https://doi.org/10.1016/j.compositesa.2011.07.024 3. Nanni, A. (1993). FRP reinforcement for prestressed and non-prestressed concrete structures. In Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures (pp. 3-12). Elsevier https://doi.org/10.1016/B978-0-444-89689-6.50005-7 4. Sutton, A. P. (1995). Interfaces in crystalline materials. Monographs on the Physice and Chemistry of Materials, 414-423. 5. Sanchez, I. C. (Ed.). (2013). Physics of polymer surfaces and interfaces. Butterworth-Heinemann. 6. Plueddemann, E. P. (Ed.). (2016). Interfaces in Polymer Matrix Composites: Composite Materials (Vol. 6). Elsevier. 7. Greszczuk, L. (1969). Theoretical studies of the mechanics of the fiber-matrix interface in composites. In Interfaces in composites. ASTM International. https://doi.org/10.1520/STP44699S 8. Hsueh, C. H. (1990). Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites. Materials Science and Engineering: A, 123(1), 1-11. https://doi.org/10.1016/0921-5093(90)90203-F 9. Chandra, N., Li, H., Shet, C., & Ghonem, H. (2002). Some issues in the application of cohesive zone models for metal–ceramic interfaces. International Journal of Solids and Structures, 39(10), 2827-2855. https://doi.org/10.1016/S0020-7683(02)00149-X 10. Smith, R. A. "Composite defects and their detection." Materials science and engineering 3 (2009): 103-143. 11. Petrescu, R.V., Aversa, R., Akash, B., Corchado, J., Berto, F., Apicella, A. and Petrescu, F.I., "When boeing is dreaming–a review", 2017. https://doi.org/10.3844/jastsp.2017.149.161 12. Heslehurst, Rikard Benton. “Defects and damage in composite materials and structures”, CRC Press, 2014. https://doi.org/10.1201/b16765 13. Allaoui, S., Hivet, G., Soulat, D., Wendling, A., Ouagne, P. and Chatel, S., "Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement". International Journal of Material Forming 7(2), (2014), pp.155-165.. https://doi.org/10.1007/s12289-012-1116-5 14. Tallinen, T., Ojajärvi, J., Åström, J. A., & Timonen, J. (2010). Scaling behavior in non-hookean compression of thin-walled structures. Physical review letters, 105(6), 066102. https://doi.org/10.1103/PhysRevLett.105.066102 15. Prodromou, A. G., & Chen, J. (1997). On the relationship between shear angle and wrinkling of textile composite preforms. Composites Part A: Applied Science and Manufacturing, 28(5), 491-503. https://doi.org/10.1016/S1359-835X(96)00150-9 16. Zhu, B., Yu, T. X., & Tao, X. M. (2007). An experimental study of in-plane large shear deformation of woven fabric composite. Composites Science and Technology, 67(2), 252-261. https://doi.org/10.1016/j.compscitech.2006.08.011 17. Pandey, R. K., & Sun, C. T. (1999). Mechanisms of wrinkle formation during the processing of composite laminates. Composites science and technology, 59(3), 405-417. https://doi.org/10.1016/S0266-3538(98)00080-3 18. Fish, J., LeMonds, J., & Shek, K. L. (1999). Modeling of wrinkling in compression molding of composites. Journal of engineering mechanics, 125(8), 951-955. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:8(951) 19. Dodwell, T. J., Butler, R., & Hunt, G. W. (2014). Out-of-plane ply wrinkling defects during consolidation over an external radius. Composites Science and Technology, 105, 151-159. https://doi.org/10.1016/j.compscitech.2014.10.007 20. Erland, S., Dodwell, T. J., & Butler, R. (2014). Inter and intra-ply shearing of uncured carbon fibre laminates. In ECCM16-16TH European Conference on Composite Materials, June(pp. 22-26). 21. Croft, K., Lessard, L., Pasini, D., Hojjati, M., Chen, J. and Yousefpour, A. “Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates”. Composites Part A: Applied Science and Manufacturing, 42(5), (2011), pp.484-491. https://doi.org/10.1016/j.compositesa.2011.01.007 22. Meola, C. and Carlomagno, G.M., “Infrared thermography to evaluate impact damage in glass/epoxy with manufacturing defects”. International Journal of Impact Engineering 67, (2014): pp.1-11. https://doi.org/10.1016/j.ijimpeng.2013.12.010 23. Yin, H., Peng, X., Du, T. and Guo, Z., “Draping of plain woven carbon fabrics over a double-curvature mold”. Composites Science and Technology, 92, (2014): pp.64-69. https://doi.org/10.1016/j.compscitech.2013.12.013 24. Lin, M., & Chang, F. K. (2002). The manufacture of composite structures with a built-in network of piezoceramics. Composites Science and Technology, 62(7-8), 919-939. https://doi.org/10.1016/S0266-3538(02)00007-6 25. Kuang, K., Kenny, R., Whelan, M. P., Cantwell, W. J., & Chalker, P. R. (2001). Embedded fibre Bragg grating sensors in advanced composite materials. Composites Science and Technology, 61(10), 1379-1387. https://doi.org/10.1016/S0266-3538(01)00037-9 26. Crosby, P. A., Powell, G. R., Fernando, G. F., France, C. M., Spooncer, R. C., & Waters, D. N. (1996). In situ cure monitoring of epoxy resins using optical fibre sensors. Smart materials and structures, 5(4), 415. https://doi.org/10.1088/0964-1726/5/4/005 27. Stock, S. R. "X-ray microtomography of materials." International Materials Reviews 44.4 (1999): 141-164. https://doi.org/10.1179/095066099101528261 28. Croom, B., Wang, W.M., Li, J. and Li, X., “Unveiling 3D deformations in polymer composites by coupled micro x-ray computed tomography and volumetric digital image correlation”. Experimental Mechanics, 56(6), (2016): pp.999-1016. https://doi.org/10.1007/s11340-016-0140-7 29. Senck, S., Scheerer, M., Revol, V., Dobes, K., Plank, B. and Kastner, J., “Non-destructive evaluation of defects in polymer matrix composites for aerospace applications using x-ray Talbot-Lau interferometry and micro CT”. 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2017, (p. 0355). https://doi.org/10.2514/6.2017-0355 30. Potter, K. D. "Understanding the origins of defects and variability in composites manufacture." International Conference on Composite Materials (ICCM)-17, Edinburgh, UK. 2009. 31. Breuer, U., Neitzel, M., Ketzer, V. and Reinicke, R., “Deep drawing of fabric‐reinforced thermoplastics: Wrinkle formation and their reduction”. Polymer composites, 17(4), (1996): pp.643-647. https://doi.org/10.1002/pc.10655 32. Hallander, P., Akermo, M., Mattei, C., Petersson, M. and Nyman, T., “An experimental study of mechanisms behind wrinkle development during forming of composite laminates”. Composites Part A: Applied Science and Manufacturing, 50, (2013): pp.54-64. https://doi.org/10.1016/j.compositesa.2013.03.013 33. Liu, L., Zhang, B. M., Wang, D. F., & Wu, Z. J. Effects of cure cycles on void content and mechanical properties of composite laminates. Composite structures, 73(3), (2006) 303-309. https://doi.org/10.1016/j.compstruct.2005.02.001 34. Haddad, M., Zitoune, R., Eyma, F., & Castanie, B. Study of the surface defects and dust generated during trimming of CFRP: Influence of tool geometry, machining parameters and cutting speed range. Composites Part A: Applied Science and Manufacturing, 66, (2014) 142-154. https://doi.org/10.1016/j.compositesa.2014.07.005 35. De Moura, M. F. S. F., Daniaud, R., & Magalhaes, A. G. Simulation of mechanical behaviour of composite bonded joints containing strip defects. International journal of adhesion and adhesives, 26(6), (2006) 464-473. https://doi.org/10.1016/j.ijadhadh.2005.06.010 36. Lightfoot, J. S., Wisnom, M. R., & Potter, K. Defects in woven preforms: Formation mechanisms and the effects of laminate design and layup protocol. Composites Part A: Applied Science and Manufacturing, 51, (2013) 99-107. https://doi.org/10.1016/j.compositesa.2013.04.004 37. Fernlund, G., Rahman, N., Courdji, R., Bresslauer, M., Poursartip, A., Willden, K., & Nelson, K. Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts. Composites part A: applied science and manufacturing, 33(3), (2002) 341-351. https://doi.org/10.1016/S1359-835X(01)00123-3 38. Pandey, R. K., & Sun, C. T. Mechanisms of wrinkle formation during the processing of composite laminates. Composites science and technology, 59(3), (1999) 405-417. https://doi.org/10.1016/S0266-3538(98)00080-3 39. Borbély, A., Biermann, H., Hartmann, O., & Buffière, J. Y. The influence of the free surface on the fracture of alumina particles in an Al–Al2O3 metal–matrix composite. Computational materials science, 26, (2003) 183-188. https://doi.org/10.1016/S0927-0256(02)00397-X 40. Maire, E., Babout, L., Buffiere, J. Y., & Fougeres, R. Recent results on 3D characterisation of microstructure and damage of metal matrix composites and a metallic foam using X-ray tomography. Materials Science and Engineering: A, 319, (2001) 216-219. https://doi.org/10.1016/S0921-5093(01)00924-8 41. Mummery, P. M., Derby, B., Anderson, P., Davis, G. R., & Elliott, J. C. X‐ray microtomographic studies of metal matrix composites using laboratory X‐ray sources. Journal of Microscopy, 177(3), (1995) 399-406. https://doi.org/10.1111/j.1365-2818.1995.tb03570.x 42. McDonald, S. A., Preuss, M., Maire, E., Buffiere, J. Y., Mummery, P. M., & Withers, P. J. X‐ray tomographic imaging of Ti/SiC composites. Journal of microscopy, 209(2), (2003) 102-112. https://doi.org/10.1046/j.1365-2818.2003.01105.x 43. Baaklini, G. Y., Bhatt, R. T., Eckel, A. J., Engler, P., Rauser, R. W., & Castelli, M. G. X-ray microtomography of ceramic and metal matrix composites. Materials evaluation, 53(9) (1995). 44. Zhu, B., Yu, T. X., Teng, J., & Tao, X. M. Theoretical modeling of large shear deformation and wrinkling of plain woven composite. Journal of Composite Materials, 43(2), (2009) 125-138. https://doi.org/10.1177/0021998308098237 45. Hsiao, H. M., & Daniel, I. M. Effect of fiber waviness on stiffness and strength reduction of unidirectional composites under compressive loading. Composites science and technology, 56(5), (1996) 581-593. https://doi.org/10.1016/0266-3538(96)00045-0 46. Cho, M., Kim, M.H., Choi, H.S., Chung, C.H., Ahn, K.J. and Eom, Y.S., “A study on the room-temperature curvature shapes of unsymmetric laminates including slippage effects”. Journal of composite materials, 32(5), (1998): pp.460-482. https://doi.org/10.1177/002199839803200503 47. Hanna, E.G., Poitou, A. and Casari, P., “MODELING THE INTERPLY SLIP DURING FORMING OF THERMOPLASTIC LAMINATES”. Materials Physics and Mechanics, 40, (2018): pp.22-36. 48. Morris, S.R. and Sun, C.T., “An investigation of interply slip behaviour in AS4/PEEK at forming temperatures”. Composites Manufacturing, 5(4), (1994): pp.217-224. https://doi.org/10.1016/0956-7143(94)90136-8
Conference: SAMPE 2020 | Virtual Series
Publication Date: 2020/06/01
SKU: TP20-0000000071
Pages: 10
Price: FREE
Get This Paper