Get This Paper

Cold Spray Additive Manufacturing of Polymers: Temperature Profiles Dictate Properties Upon Deposition


Title: Cold Spray Additive Manufacturing of Polymers: Temperature Profiles Dictate Properties Upon Deposition

Authors: Tristan W. Bacha, Elizabeth M. Henning, Luke Elwell, Francis M. Haas and Joseph F. Stanzione III

DOI: 10.33599/nasampe/s.20.0140

Abstract: The cold spray additive manufacturing process enables deposition of coatings and structures by impact bonding microparticles to surfaces through preheated, nozzle-accelerated gas flow. Most established models of gas-particle heat transfer in cold spray assume lumped thermal capacitance, which ignores particle temperature distributions and is typically valid for metals. However, recent advances in cold spray consider polymeric systems that differ categorically and considerably in thermophysical properties compared to metals. Particularly, the low Biot number (Bi) assumption may be invalid, impacting efficiency and quality of polymeric particle deposition. We describe herein a 1D transient gas-particle heat transfer model that simulates temperature profile evolution in a representative particle traveling through a cold spray nozzle. With this model, we simulated thermal histories of polymeric materials at realistic processing conditions. Polymer sprays with Bi consistently near 10-1 or greater demonstrated thermal inhomogeneities, in some cases straddling the glass transition temperature. Thermal stratification provides insight into physical conditions of a particle before deposition, which can guide processing parameters to improve deposition efficiency and quality of polymer cold sprays.

References: 1. Fauchais, P., Heberlein, J., and Boulos, M., Thermal Spray Fundamentals. New York: Springer, 2014 2. Champagne, Victor K., The Cold Spray Materials Deposition Process. Cambridge England: Woodhead, 2007 3. Moridi, A., Hassani-Gangaraj, S. M., Guagliano, M., and Dao, M., "Cold spray coating: review of material systems and future perspectives," Surface Engineering 30 (2014): 369-395. doi: 10.1179/1743294414y.0000000270. 4. Xu, Y. and Hutchings, I. M., "Cold spray deposition of thermoplastic powder," Surface and Coatings Technology 201 (2006): 3044-3050. doi: 10.1016/j.surfcoat.2006.06.016. 5. Bush, T. B., Khalkhali, Z., Champagne, V., Schmidt, D. P., and Rothstein, J. P., "Optimization of Cold Spray Deposition of High-Density Polyethylene Powders," Journal of Thermal Spray Technology 26 (2017): 1548-1564. doi: 10.1007/s11666-017-0627-5. 6. Khalkhali, Z., Xie, W., Champagne, V. K., Lee, J.-H., and Rothstein, J. P., "A comparison of cold spray technique to single particle micro-ballistic impacts for the deposition of polymer particles on polymer substrates," Surface and Coatings Technology 351 (2018): 99-107. doi: 10.1016/j.surfcoat.2018.07.053. 7. Ravi, K., Ichikawa, Y., Deplancke, T., Ogawa, K., Lame, O., and Cavaille, J.-Y., "Development of Ultra-High Molecular Weight Polyethylene (UHMWPE) Coating by Cold Spray Technique," Journal of Thermal Spray Technology 24 (2015): 1015-1025. doi: 10.1007/s11666-015-0276-5. 8. Khalkhali, Z. and Rothstein, J. P., "Characterization of the cold spray deposition of a wide variety of polymeric powders," Surface and Coatings Technology 383 (2020): doi: 10.1016/j.surfcoat.2019.125251. 9. Ravi, K., Sulen, W. L., Bernard, C., Ichikawa, Y., and Ogawa, K., "Fabrication of micro-/nano-structured super-hydrophobic fluorinated polymer coatings by cold-spray," Surface and Coatings Technology 373 (2019): 17-24. doi: 10.1016/j.surfcoat.2019.05.078. 10. Ravi, K., Deplancke, T., Ogawa, K., Cavaillé, J.-Y., and Lame, O., "Understanding deposition mechanism in cold sprayed ultra high molecular weight polyethylene coatings on metals by isolated particle deposition method," Additive Manufacturing 21 (2018): 191-200. doi: 10.1016/j.addma.2018.02.022. 11. Sperling, Leslie H., Introduction to Physical Polymer Science. Hoboken, New Jersey: Wiley, 2006 12. Champagne, V. K., Helfritch, D. J., Dinavahi, S. P. G., and Leyman, P. F., "Theoretical and Experimental Particle Velocity in Cold Spray," Journal of Thermal Spray Technology (2010): doi: 10.1007/s11666-010-9530-z. 13. Marrocco, T., McCartney, D. G., Shipway, P. H., and Sturgeon, A. J., "Production of titanium deposits by cold-gas dynamic spray: Numerical modeling and experimental characterization," Journal of Thermal Spray Technology 15 (2006): 263-272. doi: 10.1361/105996306X108219. 14. Helfritch, D. and Champagne, V. K., "Optimal Particle Size for the Cold Spray Process," in Thermal Spray 2006, Seattle, Washington, USA, 2006. 15. Incropera, F. P., DeWitt, D. P., Bergman, T. L., and Lavine, A. S., Fundamentals of Heat and Mass Transfer 5th Edition. Wiley, 2001 16. Katanoda, Hiroshi., "Numerical Simulation of Temperature Uniformity within Solid Particles in Cold Spray," Journal of Solid Mechanics and Materials Engineering 2 (2008): 58-69. doi: 10.1299/jmmp.2.58. 17. Ivosevic, M., Cairncross, R. A., and Knight, R., "3D predictions of thermally sprayed polymer splats: Modeling particle acceleration, heating and deformation on impact with a flat substrate," International Journal of Heat and Mass Transfer 49 (2006): 3285-3297. doi: 10.1016/j.ijheatmasstransfer.2006.03.028. 18. Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena. New York: Wiley, 2006 19. Helfritch, D. and Champagne Jr, V., "A Model Study of Powder Particle Size Effects in Cold Spray Deposition," in Army Science Conference, Florida, 2008. 20. Henderson, Charles B., "Drag Coefficients of Spheres in Continuum and Rarefied Flows," AIAA Journal 14 (1976): 707-708. doi: 10.2514/3.61409. 21. Ranz, W. and Marshall, W. R., "Evaporation from drops," Chem. eng. prog 48 (1952): 141-146. 22. Shapiro, Ascher. H., The Dynamics and Thermodynamics of Compressible Fluid Flow. New York: Ronald Press Company, 1953 23. Billig, Frederick S., "Shock-wave shapes around spherical-and cylindrical-nosed bodies," Journal of Spacecraft and Rockets 4 (1967): 822-823. doi: 10.2514/3.28969. 24. Tan, Zhongchao., Air Pollution and Greenhouse Gases: From Basic Concepts to Engineering Applications for Air Emission Control. Springer Singapore, 2014 25. Bush, Trenton., "Cold Gas Dynamic Spray - Polymer Deposition," Master of Science M.S., Mechanical Engineering, University of Massachussets Amherst, 2016. 26. Jenkins, R., Aldwell, B., Yin, S., Chandra, S., Morgan, G., and Lupoi, R., "Solid state additive manufacture of highly-reflective Al coatings using cold spray," Optics & Laser Technology 115 (2019): 251-256. doi: 10.1016/j.optlastec.2019.02.011. 27. Algaer, Elena., "Thermal Conductivity of Polymer Materials - Reverse Nonequilibrium Molecular Dynamics Simulations," Ph.D, Physical Chemistry, Technische Universität, Darmstadt, 2010. 28. Hassani-Gangaraj, M., Veysset, D., Champagne, V. K., Nelson, K. A., and Schuh, C. A., "Adiabatic shear instability is not necessary for adhesion in cold spray," Acta Materialia 158 (2018): 430-439. doi: 10.1016/j.actamat.2018.07.065. 29. Grujicic, M., Zhao, C. L., DeRosset, W. S., and Helfritch, D., "Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process," Materials & Design 25 (2004): 681-688. doi: 10.1016/j.matdes.2004.03.008. 30. Mott, P. H., Dorgan, J. R., and Roland, C. M., "The bulk modulus and Poisson's ratio of “incompressible” materials," Journal of Sound and Vibration 312 (2008): 572-575. doi: 10.1016/j.jsv.2008.01.026. 31. Meyer, M. C., Yin, S., McDonnell, K. A., Stier, O., and Lupoi, R., "Feed rate effect on particulate acceleration in Cold Spray under low stagnation pressure conditions," Surface and Coatings Technology 304 (2016): 237-245. doi: 10.1016/j.surfcoat.2016.07.017. 32. Shah, S., Lee, J., and Rothstein, J. P., "Numerical Simulations of the High-Velocity Impact of a Single Polymer Particle During Cold-Spray Deposition," Journal of Thermal Spray Technology 26 (2017): 970-984. doi: 10.1007/s11666-017-0557-2. 33. Yildirim, B., Muftu, S., and Gouldstone, A., "Modeling of high velocity impact of spherical particles," Wear 270 (2011): 703-713. doi: 10.1016/j.wear.2011.02.003.

Conference: SAMPE 2020 | Virtual Series

Publication Date: 2020/06/01

SKU: TP20-0000000140

Pages: 15

Price: FREE

Get This Paper