Get This Paper

Evaluation of Fiber Placement Strategies for the Implementation of Continuous Reinforcement Fibers in Selective Laser Sintering Process


Title: Evaluation of Fiber Placement Strategies for the Implementation of Continuous Reinforcement Fibers in Selective Laser Sintering Process

Authors: Patrick Moll, Felix Pirrung, Michael Baranowski, Sven Coutandin and Jürgen Fleischer

DOI: 10.33599/nasampe/s.20.0166

Abstract: Among engineering materials today continuous fiber reinforced polymers (FRP) show some of the highest stiffness and strength to weight ratios. To rival the traditional manufacturing methods of continuous FRP many investigations have sought to combine the outstanding mechanical performances of these materials with the freedom in design and the economic benefits of additive manufacturing (AM). This paper focuses on the fiber placement strategies and their interaction with Selective Laser Sintering (SLS) specific machine features. The goal is to develop and conduct test series to gain a deeper understanding of how the process, the polymer, and the reinforcement fibers interact. For this investigation different patterns of glass fiber rovings are embedded into specimens made from PA 12 on a Sintratec Kit printer. The rovings are put up onto a frame in varying patterns to be able to relate fiber tension and curvature as well as the stack height of intersecting rovings to the quality of embedding. Additionally the time of placement, the clamping and the interaction of the fibers with the recoater have been investigated. Based on these results an SLS printer with automated continuous fiber implementation will be developed in the future.

References: [1]. P. Pinter; S. Baumann; C. Lohr; A. Heuer; L. Englert & K.A. Weidenmann. “Mechanical Properties of Additively Manufactured Polymer Samples Using a Piezo Controlled Injection Molding Unit and Fused Filament Fabrication Compared with a Conventional Injection Molding Process” Solid Freeform Fabrication Symposium. Austin, Texas, USA. August 13-15, 2018. [2] Markforged Carbon Fiber Filament. Markforged. 03 Jan 2020 <> [3] Arburg: Freeformer 300-4X für faserverstärkte Bauteile - Zusätzliche Achse ermöglicht lokale Bauteilverstärkung - Praxisbeispiel: Individuelle Handorthesen für die Medizintechnik. 21 Oct 2019. Plasticker – the home of plastics. 03 Jan 2020 <></> [4] Wendel, B.; Rietzel, D.; Kühnlein, F.; Feulner, R.; Hülder, G.; Schmachtenberg, E. „Additive Processing of Polymers“, Macromolecular Materials Engineering 293 (10) (2008): 799–809. DOI: 10.1002/mame.200800121. [5]. Baumann, F.; Sielaff, L. & Fleischer, J. “Process Analysis and Development of a Module for Implementing Continuous Fibres in an Additive Manufacturing Process”, SAMPE Europe Symposium. Stuttgart, Germany. November 14 – 16, 2017. Society for the Advancement of Material and Process Engineering. [6]. Fischer, A.; Rommel, S. & Bauernhansl, T. “New Fibre Matrix Process with 3D Fibre Printer - A Stragic In-Process Integration of Endless Fibres Using Fused Depostion Modeling”, IFIP TC 5 International Conference, NEW PROLAMAT 2013. Dresden, Germany. October 10-11, 2013. [7]. Bettini, P.; Alitta, G.; Sala, G. & Di Landro, L. “Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic”, Journal of Materials Engineering and Performance 26(2) (2017): 843–848. DOI: 10.1007/s11665-016-2459-8. [8]. Li, N.; Li, Y. & Liu, S. “Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing”, Journal of Materials Processing Technology 238 (2016): 218–225. DOI: 10.1016/j.jmatprotec.2016.07.025. [9]. Yang, C.; Tian, X.; Liu, T.; Cao, Y. & Li, D. “3D printing for continuous fiber reinforced thermoplastic composites. Mechanism and performance“, Rapid Prototyping Journal 23(1) (2017): 209–215. DOI: 10.1108/RPJ-08-2015-0098. [10]. Baumann, F.; Scholz, J. & Fleischer, J. “Investigation of a New Approach for Additively Manufactured Continuous Fiber-reinforced Polymers“, Procedia CIRP 66 (2017): 323–328. DOI: 10.1016/j.procir.2017.03.276. [11]. Dickson, A. N.; Barry, J. N.; McDonnell, K. A. & Dowling, D. P. “Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing“, Additive Manufacturing 16 (2017): 146–152. DOI: 10.1016/j.addma.2017.06.004. [12]. Zhu, P.; Li, S.; Ashcroft, I.; Jones, A. & Pu, J., “3D Printing of continuous fibre reinforced thermoplastic composites“, 21st International Conference on Composite Materials, Xi’an, China. August 20-25, 2017. [13]. van Der Klift, F.; Koga, Y.; Todoroki, A.; Ueda, M.; Hirano, Y. & Matsuzaki, R. “3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens“, Open Journal of Composite Materials 6(1) (2016): 18–27. DOI: 10.4236/ojcm.2016.61003. [14]. Karalekas, D. & Antoniou, K. “Composite rapid prototyping. Overcoming the drawback of poor mechanical properties“, Journal of Materials Processing Technology 153-154 (2004): 526–530. DOI: 10.1016/j.jmatprotec.2004.04.019. [15]. Karalekas, D. E. “Study of the mechanical properties of nonwoven fibre mat reinforced photopolymers used in rapid prototyping“, Materials & Design 24(8) (2003): 665–670. DOI: 10.1016/S0261-3069(03)00153-5. [16]. Klostermann, D.; Charthoff, R.; Graves, G.; Osborne, N. & Priore, B. “Interfacial characteristics of composites fabricated by laminated object manufacturing“, Composites Part A: Applied Science and Manufacturing 29(9-10) (1998): 1165-1174. DOI10.1016/S1359-835X(98)00088-8. [17]. Parandoush, P.; Tucker, L.; Zhou, C. & Lin, D. “Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites“, Materials & Design 131 (2017): 186–195. DOI: 10.1016/j.matdes.2017.06.013. [18]. Parandoush, P.; Zhou, C. & Lin, D. “3D Printing of Ultrahigh Strength Continuous Carbon Fiber Composites“, Advanced Engineering Materials 21 (2019). DOI: 10.1002/adem.201800622.

Conference: SAMPE 2020 | Virtual Series

Publication Date: 2020/06/01

SKU: TP20-0000000166

Pages: 14

Price: FREE

Get This Paper