Get This Paper

Advanced Phthalonitrile Resin Systems for Vacuum Processing


Title: Advanced Phthalonitrile Resin Systems for Vacuum Processing

Authors: Boris A. Bulgakov, Alexandr V. Babkin, Alexey V. Kepman and Viktor V. Avdeev

DOI: 10.33599/nasampe/s.20.0238

Abstract: Advanced phthalonitrile resin systems based on recently introduced low-melting phosphorus-containing monomers were developed. A new class of bis-benzonitirle reactive plastisizers allowed to obtain resin systems possessing improved processability (melt viscosity < 100 mPa·s at temperatures down to 120 °C) suitable for manufacturing composites by vacuum infusion molding process or RTM at the lowest reported processing temperature of 120 °C on carbon fabric (3K HTA40, twill). The curing cycle was adjusted to achieve the best mechanical properties of the composites reaching 852 MPa in compressive strength. The influence of post-curing conditions on the resulting composites properties was established. After post-curing at 375 °C the obtained composites demonstrated up to 90% mechanical properties retention at 400 °C (τ12 = 60-80 MPa). Solvent-free phthalonitrile prepregs were developed for the first time. Prepreg consolidation yielded high-quality composites. Flame retardant properties of investigated composites demonstrated extremely high LOI > 80%. Thus easy-processable phthalonitriles for out-of-autoclave manufacturing techniques with convenient curing conditions and excellent heat resistant and flame-retardant properties were developed.

References: [1] J. McHugh, F. Grasse, CHARACTERIZATION OF RELEASE AGENTS USED IN RESIN TRANSFER MOULD-ING (RTM) AND LIQUID COMPRESSION MOULDING (LCM) PROCESSES, in: Proc. THERMOSETTING RESINS 2018 Conf. 25 – 27 Sept. 2018, BERLIN, Ger., 2018: p. 117. [2] S.E. Evsyukov, T. Pohlmann, H.D. Stenzenberger, m-Xylylene bismaleimide: a versatile building block for high-performance thermosets, Polym. Adv. Technol. 26 (2015) 574–580. doi:10.1002/pat.3488. [3] A. V. Babkin, E.M. Erdni-Goryaev, A. V. Solopchenko, A. V. Kepman, V. V. Avdeev, Mechanical and thermal properties of modified bismaleimide matrices toughened by polyetherimides and polyimide, Polym. Adv. Technol. 27 (2016) 774–780. doi:10.1002/pat.3711. [4] H.R.. Lubowitz, C.H.. Sheppard, POLYIMIDE OLIGOMERS AND BLENDS AND METHOD OF CURING, US5116935, 1992. (accessed June 16, 2017). [5] H.D. Stenzenberger, Addition polyimides, in: High Perform. Polym., Springer-Verlag, Berlin/Heidelberg, 1994: pp. 165–220. doi:10.1007/BFb0021199. [6] M. Xu, J. Hu, X. Zou, M. Liu, S. Dong, Y. zou, X. Liu, Mechanical and thermal enhancements of benzoxazine-based GF composite laminated by in situ reaction with carboxyl functionalized CNTs, J. Appl. Polym. Sci. 129 (2013) 2629–2637. doi:10.1002/app.38988. [7] A. Chernykh, J. Liu, H. Ishida, Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain, Polymer (Guildf). 47 (2006) 7664–7669. doi:10.1016/j.polymer.2006.08.041. [8] M. Laskoski, D.D. Dominguez, T.M. Keller, Development of an oligomeric cyanate ester resin with enhanced processability, J. Mater. Chem. 15 (2005) 1611–1613. doi:10.1039/b500126a. [9] I. Hamerton, Chemistry and technology of cyanate ester resins, Springer Science & Business Media, 2012. [10] S.B. Sastri, J.P. Armistead, T.M. Keller, Phthalonitrile-carbon fiber composites, Polym. Compos. 17 (1996) 816–822. doi:10.1002/pc.10674. [11] S.B. Sastri, J.P. Armistead, T.M. Keller, U. Sorathia, Phthalonitrile-glass fabric composites, Polym. Compos. 18 (1997) 48–54. doi:10.1002/pc.10260. [12] D. Augustine, D. Mathew, C. Reghunadhan Nair, End-functionalized thermoplastic-toughened phthalonitrile composites: influence on cure reaction and mechanical and thermal properties, Polym. Int. 64 (2015) 146–153. doi:10.1002/pi.4774. [13] L. Zong, C. Liu, S. Zhang, J. Wang, X. Jian, Enhanced thermal properties of phthalonitrile networks by cooperating phenyl-s-triazine moieties in backbones, Polymer (Guildf). 77 (2015) 177–188. doi:10.1016/j.polymer.2015.09.035. [14] Y. Luo, M. Xu, H. Pan, K. Jia, X. Liu, Effect of ortho-diallyl bisphenol A on the processability of phthalonitrile-based resin and their fiber-reinforced laminates, Polym. Eng. Sci. 56 (2016) 150–157. doi:10.1002/pen.24237. [15] D.D. Dominguez, H.N. Jones, T.M. Keller, The effect of curing additive on the mechanical properties of phthalonitrile-carbon fiber composites, Polym. Compos. 25 (2004) 554–561. doi:10.1002/pc.20049. [16] D.D. Dominguez, T.M. Keller, Low-melting Phthalonitrile Oligomers: Preparation, Polymerization and Polymer Properties, High Perform. Polym. 18 (2006) 283–304. doi:10.1177/0954008306060143. [17] M. Laskoski, J.S. Clarke, A. Neal, H.L. Ricks-Laskoski, W.J. Hervey, T.M. Keller, Synthesis of bisphenol A-free oligomeric phthalonitrile resins with sulfone and sulfone-ketone containing backbones, J. Polym. Sci. Part A Polym. Chem. 54 (2016) 1639–1646. doi:10.1002/pola.28020. [18] Z. Zhang, Z. Li, H. Zhou, X. Lin, T. Zhao, M. Zhang, C. Xu, Self-catalyzed silicon-containing phthalonitrile resins with low melting point, excellent solubility and thermal stability, J. Appl. Polym. Sci. 131 (2014) n/a-n/a. doi:10.1002/app.40919. [19] M. Laskoski, A. Neal, T.M. Keller, D. Dominguez, C.A. Klug, A.P. Saab, Improved synthesis of oligomeric phthalonitriles and studies designed for low temperature cure, J. Polym. Sci. Part A Polym. Chem. 52 (2014) 1662–1668. doi:10.1002/pola.27161. [20] A.V. Babkin, E.B. Zodbinov, B.A. Bulgakov, A.V. Kepman, V.V. Avdeev, Low-melting siloxane-bridged phthalonitriles for heat-resistant matrices, Eur. Polym. J. 66 (2015) 452–457. doi:10.1016/j.eurpolymj.2015.03.015. [21] B.A. Bulgakov, A.V. Babkin, P.B. Dzhevakov, A.A. Bogolyubov, A.V. Sulimov, A.V. Kepman, Y.G.Y.G. Kolyagin, D.V. Guseva, V.Y. Rudyak, A.V. Chertovich, Low-melting phthalonitrile thermosetting monomers with siloxane- and phosphate bridges, Eur. Polym. J. 84 (2016) 205–217. doi:10.1016/j.eurpolymj.2016.09.013. [22] B. Bulgakov, A. Sulimov, A. Babkin, I. Timoshkin, A. Solopchenko, A. Kepman, V. Avdeev, Phthalonitrile-carbon fiber composites produced by vacuum infusion process, J. Compos. Mater. 51 (2017) 4157–4164. doi:10.1177/0021998317699452. [23] B.A. Bulgakov, K.S. Belsky, S.S. Nechausov, E.S. Afanaseva, A. V. Babkin, A. V. Kepman, V. V. Avdeev, Carbon fabric reinforced propargyl ether/phthalonitrile composites produced by vacuum infusion, Mendeleev Commun. 28 (2018) 44–46. doi:10.1016/j.mencom.2018.01.014. [24] T.M. Keller, D.D. Dominguez, High temperature resorcinol-based phthalonitrile polymer, Polymer (Guildf). 46 (2005) 4614–4618. doi:10.1016/j.polymer.2005.03.068. [25] V.E. Terekhov, V.V. Aleshkevich, E.S. Afanaseva, S.S. Nechausov, A.V. Babkin, B.A. Bulgakov, A.V. Kepman, V.V. Avdeev, Bis(4-cyanophenyl) phenyl phosphate as viscosity reducing comonomer for phthalonitrile resins, React. Funct. Polym. 139 (2019) 34–41. doi:10.1016/J.REACTFUNCTPOLYM.2019.03.010. [26] A. V. Babkin, E.B. Zodbinov, B.A. Bulgakov, A. V. Kepman, V. V. Avdeev, Low-melting siloxane-bridged phthalonitriles for heat-resistant matrices, Eur. Polym. J. 66 (2015) 452–457. doi:10.1016/j.eurpolymj.2015.03.015.

Conference: SAMPE 2020 | Virtual Series

Publication Date: 2020/06/01

SKU: TP20-0000000238

Pages: 10

Price: FREE

Get This Paper