Title: On the Relevance of Thermomechanics and Crystallization Kinetics for Finite Element Thermoforming Simulation
Authors: Dominik Dörr, Luise Kärger and Frank Henning
DOI: 10.33599/nasampe/s.20.0354
Abstract: Thermoforming of thermoplastic tapes is currently of great interest for the automotive industry, due to low cycle times, material efficiency and recyclability. Depending on material parameters and process conditions, however, manufacturing defects may occur. Finite Element (FE) forming simulation offers the possibility of a detailed a priori analysis of the deformation behavior of multilayered thermoplastic blanks during forming, considering material behavior and process conditions by means of constitutive equations and boundary conditions, respectively. Usually, thermoforming simulation is assumed to be iso-thermal, which is a reasonable assumption for temperatures above the onset of crystallization for semi-crystalline thermoplastics. Especially in a process design phase, however, the onset of crystallization cannot be excluded in general. This study presents a fully coupled thermomechanical approach for finite element forming simulation of thermoforming processes, predicting the evolution of temperature and crystallization of semi-crystalline thermoplastics. The approach is successfully validated for a generic geometry with a high agreement to experimental thermoforming tests. Finally, the relevance of including thermomechanics and crystallization kinetics is analyzed by means of a virtual sensitivity study. The study reveals that only by including those effects, the influence of all process parameters on formability can be predicted.
References: 1. F. Henning, L. Kärger, D. Dörr, F. J. Schirmaier, J. Seuffert, and A. Bernath. Fast processing and continuous simulation of automotive structural composite components. Composites Science and Technology, (171):261–279, 2019. 2. E. R. Fuchs, F. R. Field, R. Roth, and R. E. Kirchain. Strategic materials selection in the automobile body: Economic opportunities for polymer composite design. Composites Science and Technology, 68(9):1989–2002, 2008. 3. M. F. Ashby. Materials selection in mechanical design. Elsevier/Butterworth-Heinemann, Amsterdam, 4. edition, 2011. 4. L. Kärger, A. Bernath, F. Fritz, S. Galkin, D. Magagnato, A. Oeckerath, A. Schön, and F. Henning. Development and validation of a CAE chain for unidirectional fibre reinforced composite components. Composite Structures, (132):350–358, 2015. 5. K. Friedrich and A. A. Almajid. Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications. Applied Composite Materials, 20(2): 107–128, 2013. 6. P. K. Mallick, editor. Materials, design and manufacturing for lightweight vehicles. Woodhead Publishing in materials. CRC Press, Boca Raton, 2010. 7. T. Joppich, D. Doerr, L. van der Meulen, T. Link, B. Hangs, F. Henning. Layup and process dependent wrinkling behavior of PPS/CF UD tape-laminates during nonisothermal press forming into a complex component. AIP Conference Proceedings 1769: 170011, 2016. 8. P. de Luca, P. Lefébure, A.K. Pickett. Numerical and experimental investigation of some press forming parameters of two fibre reinforced thermoplastics: APC2-AS4 and PEI-CETEX. Composites Part A: Applied Science and Manufacturing, 29(1–2): 101–10, 1998. 9. A. Benkaddour, G. Lebrun, L. Laberge-Lebel. Thermostamping of [0/90] n carbon/peek laminates: influence of support configuration and demolding temperature on part consolidation. Polymer Composites: 22-42, 1998. 10. S. P. Haanappel, R. ten Thije, U. Sachs, B. Rietman, and R. Akkerman. Formability analyses of uni-directional and textile reinforced thermoplastics. Composites Part A: Applied Science and Manufacturing (56): 80–92, 1998. 11. Y. Gong, X. Peng, Y. Yao, Z. Guo. An anisotropic hyperelastic constitutive model for thermoplastic woven composite prepregs. Composites Science and Technology (128): 17–24, 2016. 12. P. Harrison, R. Gomes, N. Curado-Correia N. Press forming a 0/90 cross-ply advanced thermoplastic composite using the double-dome benchmark geometry. Composites Part A: Applied Science and Manufacturing (54): 56–69, 2013. 13. P. Boisse, N. Hamila, A. Madeo. The difficulties in modeling the mechanical behavior of textile composite reinforcements with standard continuum mechanics of Cauchy. Some possible remedies. International Journal of Solids and Structures (154): 55–65. 2016. 14. L. M. Dangora, C. J. Mitchell, J. A. Sherwood. Predictive model for the detection of out-of-plane defects formed during textile-composite manufacture. Composites Part A: Applied Science and Manufacturing (78): 102–12, 2015. 15. M. Machado, L. Murenu, M. Fischlschweiger, Z. Major. Analysis of the thermomechanical shear behaviour of woven-reinforced thermoplastic-matrix composites during forming. Composites Part A: Applied Science and Manufacturing (86):39–48, 2016. 16. E. Guzman-Maldonado, N. Hamila, N. Naouar, G. Moulin, P. Boisse. Simulation of thermoplastic prepreg thermoforming based on a visco-hyperelastic model and a thermal homogenization. Materials & Design (93):431–42, 2016. 17. T.G. Donderwinkel, B. Rietman, S.P. Haanappel, R. Akkerman. Stamp forming optimization for formability and crystallinity. AIP Conf Proc 1769: 170029, 2016. 18. S. Ropers. Bending behavior of thermoplastic composite sheets: viscoelasticity and temperature dependency in the draping process. AutoUni - Schriftenreihe Vol. 99. Wiesbaden and s.l.: Springer Fachmedien Wiesbaden; 2017. 19. D. Dörr. Simulation of the thermoforming process of UD fiber-reinforced thermoplastic tape laminates, Doctoral thesis, Karlsruhe Institute of Technology (KIT), 2019. 20. D. Dörr, T. Joppich, D. Kugele, F. Henning, L. Kärger: A coupled thermomechanical approach for finite element forming simulation of continuously fiber-reinforced semi-crystalline thermoplastics, Composites Part A: Applied Science and Manufacturing (125): 105508, 2019. 21. A. Ziabicki. Fundamentals of fibre formation: the science of fibre spinning and drawing. John Wiley & Sons Ltd; 1976. 22. J.D. Sierra, M.d.P. Noriega, J.F. Gómez, J.M. Pastor. Isothermal and non-isothermal crystallization kinetics for blends of polyamide 6 and polypropylene. International Journal of Plastics Technology 2(5):1–5, 2006. 23. D. Kugele, D. Dörr, F. Wittemann, B. Hangs, J. Rausch, L. Kärger, et al. Modeling of the non-isothermal crystallization kinetics of polyamide 6 composites during thermoforming. AIP Conf Proc. 1869: 030005, 2017. 24. K. Nakamura, T. Watanabe, K. Katayama, T. Amano. Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions. Journal of Applied Polymer Science 16(5):1077–91, 1972. 25. D.P.H. Hasselman, K.Y. Donaldson, J.R. Thomas. Effective thermal conductivity of uniaxial composite with cylindrically orthotropic carbon fibers and interfacial thermal barrier. Journal of Composite Materials 27(6):637–44, 1993. 26. D. Kugele, J. Rausch, J. Kriegeseis, K. Gündisch, L. Kärger, F. Henning. On the thermal behavior of thermoplastic laminates during transfer - a novel wind-tunnel approach. Proceedings ECCM17, München, Germany. 27. D. Kugele, J. Rausch, P. Müller, L. Kärger, F. Henning. Temperature distribution in thickness direction of thermoplastic laminates during thermoforming. Proceedings international conference of automotive composites (IJAUTOC 2016), Lisbon, Portugal. 28. C. Poppe, T. Joppich, D. Dörr, L. Kärger, F. Henning. Modeling and validation of gripper induced membrane forces in finite element forming simulation of continuously reinforced composites. AIP Conf Proc 1896: 030002, 2017.
Conference: SAMPE 2020 | Virtual Series
Publication Date: 2020/06/01
SKU: TP20-0000000354
Pages: 12
Price: FREE
Get This Paper