Search

DIGITAL LIBRARY: SAMPE neXus 2021 | JUNE 29 - JULY 1

Get This Paper

Optimizing Electrical snd Mechanical Properties of a Polymer-Based Composite High-Deflection Strain Gauge Using Mutli-Objective Bayesian Optimization

Description

Title: Optimizing Electrical snd Mechanical Properties of a Polymer-Based Composite High-Deflection Strain Gauge Using Mutli-Objective Bayesian Optimization

Authors: David S Wood, David Fullwood, William Christensen, Anton Bowden

DOI: 10.33599/nasampe/s.21.0511

Abstract: Polymer-based composite strain gauges are a quickly expanding technology area that exhibits advantages such as large strain capacity and high sensitivity to changes in strain. These strain gauges use an inert matrix embedded with one or more conductive fillers to exploit the elasticity of the matrix and the electrical conducting properties of the filler materials. However, determining the optimal composition of the filler materials for a particular application can be a challenging and iterative process. In the present work, the composition of a nano-nickel/silicone composite gauge was optimized based on four independent design parameters related to both mechanical and electrical performance of the gauge. Specifically, the critical impedance, critical strain, strain to failure, and initial impedance of the gauges were optimized by varying the weight ratios of Libra Gloss silicone base material, nickel nanostrands, and nickel-coated carbon fibers. The approach leveraged a combination of black-box design space modeling and multi-objective Bayesian optimization algorithm. The data from tensile tests were analyzed and compositions for a new optimal combination of parameters were found. This methodology was used to find transducer compositions that were appropriate for high strain, low-cycle wearable applications in biomechanical measurement.

References: 1. Lu Y., Biswas, M. C., Guo, Z., Jeon, J. W., & Wujcik, E. K. "Recent Developments in Bio-Monitoring Via Advanced Polymer Nanocomposite-Based Wearable Strain Sensors." Biosens Bioelectron. 123(2019): 167-177. 2. Yee M. J., Mubarak, N. M., Abdullah, E. C., Khalid, M., Walvekar, R., Karri, R. R., Nizamuddin, S., & Numan, A. "Carbon Nanomaterials Based Films for Strain Sensing Application—a Review." Nano-Structures & Nano-Objects. 18(2019). 3. Amjadi M., Kyung, K.-U., Park, I., & Sitti, M. "Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review." Advanced Functional Materials. 26(2016): 1678-1698. 4. Gong S., Lai, D. T., Wang, Y., Yap, L. W., Si, K. J., Shi, Q., Jason, N. N., Sridhar, T., Uddin, H., & Cheng, W. "Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as Highly Durable Wearable Sensors." ACS Appl Mater Interfaces. 7(2015): 19700-8. 5. Jeong Y. R., Park, H., Jin, S. W., Hong, S. Y., Lee, S.-S., & Ha, J. S. "Highly Stretchable and Sensitive Strain Sensors Using Fragmentized Graphene Foam." Advanced Functional Materials. 25(2015): 4228-4236. 6. Xiao X., Yuan, L., Zhong, J., Ding, T., Liu, Y., Cai, Z., Rong, Y., Han, H., Zhou, J., & Wang, Z. L. "High-Strain Sensors Based on Zno Nanowire/Polystyrene Hybridized Flexible Films." Adv Mater. 23(2011): 5440-4. 7. Chossat J.-B., Park, Y.-L., Wood, R. J., & Duchaine, V. "A Soft Strain Sensor Based on Ionic and Metal Liquids." IEEE Sensors Journal. 13(2013): 3405-3414. 8. Gullapalli H., Vemuru, V. S., Kumar, A., Botello-Mendez, A., Vajtai, R., Terrones, M., Nagarajaiah, S., & Ajayan, P. M. "Flexible Piezoelectric Zno-Paper Nanocomposite Strain Sensor." Small. 6(2010): 1641-6. 9. Carvalho Fernandes D. C., Lynch, D., & Berry, V. "3d-Printed Graphene/Polymer Structures for Electron-Tunneling Based Devices." Sci Rep. 10(2020): 11373. 10. Coppola B., Di Maio, L., Incarnato, L., & Tulliani, J. M. "Preparation and Characterization of Polypropylene/Carbon Nanotubes (Pp/Cnts) Nanocomposites as Potential Strain Gauges for Structural Health Monitoring." Nanomaterials (Basel). 10(2020). 11. Dal Lago E., Cagnin, E., Boaretti, C., Roso, M., Lorenzetti, A., & Modesti, M. "Influence of Different Carbon-Based Fillers on Electrical and Mechanical Properties of a Pc/Abs Blend." Polymers (Basel). 12(2019). 12. Dios J. R., Garcia-Astrain, C., Costa, P., Viana, J. C., & Lanceros-Mendez, S. "Carbonaceous Filler Type and Content Dependence of the Physical-Chemical and Electromechanical Properties of Thermoplastic Elastomer Polymer Composites." Materials (Basel). 12(2019). 13. Du J., Wang, L., Shi, Y., Zhang, F., Hu, S., Liu, P., Li, A., & Chen, J. "Optimized Cnt-Pdms Flexible Composite for Attachable Health-Care Device." Sensors (Basel). 20(2020). 14. Hur O. N., Ha, J. H., & Park, S. H. "Strainsensing Properties of Multiwalled Carbon Nanotube/Polydimethylsiloxane Composites with Different Aspect Ratio and Filler Contents." Materials (Basel). 13(2020). 15. Ke K., Wang, Y., Li, Y., Yang, J., Potschke, P., & Voit, B. "Nuomici-Inspired Universal Strategy for Boosting Piezoresistive Sensitivity and Elasticity of Polymer Nanocomposite-Based Strain Sensors." ACS Appl Mater Interfaces. 11(2019): 35362-35370. 16. Sang Z., Ke, K., & Manas-Zloczower, I. "Interface Design Strategy for the Fabrication of Highly Stretchable Strain Sensors." ACS Appl Mater Interfaces. 10(2018): 36483-36492. 17. Sekertekin Y., Bozyel, I., & Gokcen, D. "A Flexible and Low-Cost Tactile Sensor Produced by Screen Printing of Carbon Black/Pva Composite on Cellulose Paper." Sensors (Basel). 20(2020). 18. Baradoy D. A., Composition Based Modaling of Silicone Nano- Composite Strain Gauges. 2015. 19. David Remington T., & David, T., Biomechanical Applications and Modeling of Quantum Nano-Composite Strain Gauges. 2014. 20. David Remington T., & David, T. "Biomechanical Applications and Modeling of Quantum Nano-Composite Strain Gauges." (2014). 21. Johnson O. K., Gardner, C. J., Seegmiller, D. B., Mara, N. A., Dattelbaum, A. M., Rae, P. J., Kaschner, G. C., Mason, T. A., Fullwood, D. T., & Hansen, G. "Multiscale Model for the Extreme Piezoresistivity in Silicone/Nickel Nanostrand Nanocomposites." Metallurgical and Materials Transactions A. 42(2011): 3898-3906. 22. Koecher M. C. "Evaluation of Advanced Conductive Nickel Materials for Strain Sensing in Carbon Fiber Reinforced Polymers." (2012). 23. Oliver K. Johnson C. J. G., David T. Fullwood, & Brent L. Adams, N. H. a. G. H. "The Colossal Piezoresistive Effect in Nickel Nanostrand Polymer Composites and a Quantum Tunneling Model." CMC. 15(2010): 87-111. 24. Daniel Hernandez-Lobato J. M. H.-L., Amar Shah, Ryan P. Adams. "Predictive Entropy Search for Multi-Objective Bayesian Optimization." JMLR. 48(2016). 25. Jasper Snoek H. L. "Practical Bayesian Optimization of Machine Learning Algorithms." 26. Sam D. Tajbakhsh E. d. C., James L. Rosenberger. "A Fully Bayesian Approach to the Efficient Global Optimization Algoriothm." (2012). 27. Galuzio P. P., de Vasconcelos Segundo, E. H., Coelho, L. d. S., & Mariani, V. C. "Mobopt — Multi-Objective Bayesian Optimization." SoftwareX. 12(2020). 28. Eric Brochu V. M. C., Nando de Freitas. "A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning." (2010).

Conference: SAMPE NEXUS 2021

Publication Date: 2021/06/29

SKU: TP21-0000000511

Pages: 11

Price: FREE

Get This Paper