Get This Paper

Fabrication and Characterization of Forcespun Polycaprolactone Fibers


Title: Fabrication and Characterization of Forcespun Polycaprolactone Fibers

Authors: Deepa Kodali, Farooq Syed, Vijay K Rangari

DOI: 10.33599/nasampe/s.21.0575

Abstract: Forcespinning technique was used to fabricate microfibers from polycaprolactone (PCL) to understand the influence of spin speed on the fiber diameter. PCL has been extensively used as scaffolds for cell regeneration, substrates for tissue engineering and in drug delivery systems. The effect of the spinneret rotational speed on the fiber morphology, thermal and mechanical properties was investigated. The extracted fibers were characterized by scanning electron microscopy to understand the influence of angular velocities on the diameter of the fibers. Thermal properties were analyzed by differential scanning calorimetry. Additionally, produced fibers were qualitatively analyzed and characterized using tensile test analysis. Higher rotational speeds produced uniform fibers with less number of beads. The crystallinity of the fibers decreased with increase in rotational speeds. The Young’s modulus of the forcespun fibers was found to be in the range of 3.5 to 6 MPa.

References: 1. Grafe TH, Graham KM. 2003 Nanofiber Webs from Electrospinning Fibers in Air Filtration. Nonwovens Filtr. - Fifth Int. Conf. , 1–5. 2. Yoshimoto H, Shin YM, Terai H, Vacanti JP. 2003 A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24, 2077–2082. (doi:10.1016/S0142-9612(02)00635-X) 3. Ito Y, Hasuda H, Kamitakahara M, Ohtsuki C, Tanihara M, Kang IK, Kwon OH. 2005 A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. J. Biosci. Bioeng. 100, 43–49. (doi:10.1263/jbb.100.43) 4. McEachin Z, Lozano K. 2011 Production and characterization of polycaprolactone nanofibers via forcespinningTM technology. J. Appl. Polym. Sci. 126, 473–479. (doi:10.1002/app) 5. Xu F, Weng B, Materon LA, Kuang A, Trujillo JA, Lozano K. 2016 Fabrication of cellulose fine fiber based membranes embedded with silver nanoparticles via Forcespinning. J. Polym. Eng. 36, 269–278. (doi:10.1515/polyeng-2015-0092) 6. Li D, Xia Y. 2004 Electrospinning of Nanofibers: Reinventing the Wheel? Adv. Mater. 16, 1151–1170. (doi:10.1002/adma.200400719) 7. Xie J, Li X, Xia Y. 2008 Putting Electrospun Nanofibers to Work for Biomedical Research. Macromol. Rapid Commun. 29, 1775–1792. (doi:10.1002/marc.200800381) 8. Badrossamay MR, McIlwee HA, Goss JA, Parker KK. 2010 Nanofiber assembly by rotary jet-spinning. Nano Lett. 10, 2257–2261. (doi:10.1021/nl101355x) 9. Baji A, Mai YW, Wong SC, Abtahi M, Chen P. 2010 Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol. 70, 703–718. (doi:10.1016/j.compscitech.2010.01.010) 10. Xue J, Wu T, Dai Y, Xia Y. 2019 Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 119, 5298–5415. (doi:10.1021/acs.chemrev.8b00593) 11. Aldheeb MA, Asrar W, Sulaeman E, Omar AA. 2016 A review on aerodynamics of non- flapping bird wings. J. Aerosp. Technol. Manag. 8, 7–17. (doi:10.5028/jatm.v8i1.564) 12. Padilla-Gainza V, Morales G, Rodríguez-Tobías H, Lozano K. 2019 Forcespinning technique for the production of poly(d,l-lactic acid) submicrometer fibers: Process–morphology–properties relationship. J. Appl. Polym. Sci. 136, 1–9. (doi:10.1002/app.47643) 13. Sarkar K, Gomez C, Zambrano S, Ramirez M, De Hoyos E, Vasquez H, Lozano K. 2010 Electrospinning to ForcespinningTM. Mater. Today 13, 12–14. (doi:10.1016/S1369-7021(10)70199-1) 14. Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M. 2012 Electrospinning versus fibre production methods: From specifics to technological convergence. Chem. Soc. Rev. 41, 4708–4735. (doi:10.1039/c2cs35083a) 15. Sebe I, Szabó B, Nagy ZK, Szabó D, Zsidai L, Kocsis B, Zelkó R. 2013 Polymer structure and antimicrobial activity of polyvinylpyrrolidone-based iodine nanofibers prepared with high-speed rotary spinning technique. Int. J. Pharm. 458, 99–103. (doi:10.1016/j.ijpharm.2013.10.011) 16. Padron S, Fuentes A, Caruntu D, Lozano K. 2013 Experimental study of nanofiber production through forcespinning. J. Appl. Phys. 113, 1–9. (doi:10.1063/1.4769886) 17. Vazquez B, Vasquez H, Lozano K. 2012 Preparation and characterization of polyvinylidene fluoride nanofibrous membranes by forcespinningTM. Polym. Eng. Sci. 52, 2260–2265. (doi:10.1002/pen.23169) 18. Mochane MJ, Motsoeneng TS, Sadiku ER, Mokhena TC, Sefadi JS. 2019 Morphology and properties of electrospun PCL and its composites for medical applications: A mini review. Appl. Sci. 9, 1–17. (doi:10.3390/app9112205) 19. Asghari F, Samiei M, Adibkia K, Akbarzadeh A, Davaran S. 2017 Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif. Cells, Nanomedicine Biotechnol. 45, 185–192. (doi:10.3109/21691401.2016.1146731) 20. Del Ángel-Sánchez K, Ulloa-Castillo NA, Segura-Cárdenas E, Martinez-Romero O, Eliás-Zuñiga A. 2019 Design, fabrication, and characterization of polycaprolactone (PCL)-TiO 2 -collagenase nanofiber mesh scaffolds by Forcespinning. MRS Commun. 9, 390–397. (doi:10.1557/mrc.2019.13) 21. ElectrospinTech. In press. Tensile testing of electrospun nanofiber membrane. 22. Lobo AO, Afewerki S, de Paula MMM, Ghannadian P, Marciano FR, Zhang YS, Webster TJ, Khademhosseini A. 2018 Electrospun nanofiber blend with improved mechanical and biological performance. Int. J. Nanomedicine 13, 7891–7903. (doi:10.2147/IJN.S175619) 23. Zhang Y, Ouyang H, Chwee TL, Ramakrishna S, Huang ZM. 2005 Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J. Biomed. Mater. Res. - Part B Appl. Biomater. 72, 156–165. (doi:10.1002/jbm.b.30128

Conference: SAMPE NEXUS 2021

Publication Date: 2021/06/29

SKU: TP21-0000000575

Pages: 10

Price: FREE

Get This Paper