Get This Paper

Evaluating Epoxy Cure through Single-Sided NMR Measurements of Molecular Mobility


Title: Evaluating Epoxy Cure through Single-Sided NMR Measurements of Molecular Mobility

Authors: Tyler Meldrum, Elliot Kim, Kayla Copeman, Kristina Keating, Nastaran Abdol, Parviz Soroushian, Anagi Balachandra

DOI: 10.33599/nasampe/s.21.0576

Abstract: We present the use of single-sided nuclear magnetic resonance (NMR) to monitor the cure of epoxy resins. While current methods to evaluate the cure of epoxies, including calorimetry (DSC) and infrared spectroscopy (FTIR), require either destructive sampling or the creation of model samples that correlate to materials used in final products, single-sided NMR offers a non-destructive alternative to monitor cure in situ. Here, we demonstrate in-situ NMR measurements of room-temperature curing of epoxy and interpret these results in context of a reduction of molecular mobility during the curing process. We correlate the NMR relaxation properties of that signal with DSC data. Our results show how NMR supports other data on curing, the extent of cure, and adhesion strength of epoxies.

References: [1] C. G. Fry and A. C. Lind, Determination of crosslink density in thermoset polymers by use of solid-state proton NMR techniques, Macromolecules, vol. 21, no. 5, pp. 1292–1297, Sep. 1988, doi: 10.1021/ma00183a019. [2] A. Hale, C. W. Macosko, and H. E. Bair, Glass transition temperature as a function of conversion in thermosetting polymers, Macromolecules, vol. 24, no. 9, pp. 2610–2621, Apr. 1991, doi: 10.1021/ma00009a072. [3] A. Shefer and M. Gottlieb, Effect of crosslinks on the glass transition temperature of end-linked elastomers, Macromolecules, vol. 25, no. 15, pp. 4036–4042, Jul. 1992, doi: 10.1021/ma00041a028. [4] L. Guadagno et al., Development of epoxy mixtures for application in aeronautics and aerospace, RSC Adv., vol. 4, no. 30, pp. 15474–15488, Mar. 2014, doi: 10.1039/C3RA48031C. [5] S. Vyazovkin and N. Sbirrazzuoli, Kinetic methods to study isothermal and nonisothermal epoxy-anhydride cure, Macromol. Chem. Phys., vol. 200, no. 10, pp. 2294–2303, 1999, doi: 10.1002/(SICI)1521-3935(19991001)200:10<2294::AID-MACP2294>3.0.CO;2-V. [6] M. Blanco, M. A. Corcuera, C. C. Riccardi, and I. Mondragon, Mechanistic kinetic model of an epoxy resin cured with a mixture of amines of different functionalities, Polymer, vol. 46, no. 19, pp. 7989–8000, Sep. 2005, doi: 10.1016/j.polymer.2005.06.117. [7] D. S. Achilias, M. M. Karabela, E. A. Varkopoulou, and I. D. Sideridou, Cure Kinetics Study of Two Epoxy Systems with Fourier Tranform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC), J. Macromol. Sci., Part A: Pure Appl.Chem., vol. 49, no. 8, pp. 630–638, Aug. 2012, doi: 10.1080/10601325.2012.696995. [8] B. P. Cowan, Nuclear magnetic resonance and relaxation. New York: Cambridge University Press, 1997. [9] R. Kimmich, NMR: Tomography, Diffusometry, Relaxometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. [10] P. T. Callaghan, Translational dynamics and magnetic resonance: principles of pulsed gradient spin echo NMR. Oxford ; New York: Oxford University Press, 2011. [11] A. Adams, Analysis of solid technical polymers by compact NMR, TrAC, Trends Anal. Chem., vol. 83, pp. 107–119, Oct. 2016, doi: 10.1016/j.trac.2016.04.003. [12] K. Fujimoto, T. Nishi, and R. Kado, Multiple-Pulse Nuclear Magnetic Resonance Experiments on Some Crystalline Polymers, Polym. J., vol. 3, pp. 448–462, 1972, doi: 10.1295/polymj.3.448. [13] H. Kimoto, C. Tanaka, M. Yaginuma, E. Shinohara, A. Asano, and T. Kurotsu, Pulsed NMR Study of the Curing Process of Epoxy Resin, Anal. Sci., vol. 24, no. 7, pp. 915–920, 2008, doi: 10.2116/analsci.24.915. [14] G. LaPlante, J. C. García-Naranjo, and B. J. Balcom, Real-time cure monitoring of an epoxy/polyamidoamine system with unilateral magnetic resonance, NDT & E International, vol. 44, no. 3, pp. 329–334, May 2011, doi: 10.1016/j.ndteint.2010.11.002. [15] A. Omrani, A. Mollova, C. Mattea, and S. Stapf, Relaxation times and in situ kinetic analysis during network evolution of epoxy via a nickel catalyst of imidazole, Thermochimica Acta, vol. 516, no. 1, pp. 52–57, Mar. 2011, doi: 10.1016/j.tca.2011.01.012. [16] T. Venâncio and L. A. Colnago, Simultaneous measurements of T1 and T2 during fast polymerization reaction using continuous wave-free precession NMR method, Mag. Reson. Chem., vol. 50, no. 8, pp. 534–538, 2012, doi: 10.1002/mrc.3834. [17] B. Blümich, J. Perlo, and F. Casanova, Mobile single-sided NMR, Prog. Nucl. Magn. Reson. Spectrosc., vol. 52, no. 4, pp. 197–269, May 2008, doi: 10.1016/j.pnmrs.2007.10.002. [18] H. Y. Carr and E. M. Purcell, Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments, Phys. Rev., vol. 94, no. 3, pp. 630–638, May 1954, doi: 10.1103/PhysRev.94.630. [19] S. Meiboom and D. Gill, Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times, Rev. Sci. Instrum., vol. 29, no. 8, pp. 688–691, Aug. 1958, doi: 10.1063/1.1716296. [20] L. Venkataramanan, Yi-Qiao Song, and M. D. Hurlimann, Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions, IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1017–1026, May 2002, doi: 10.1109/78.995059. [21] S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta, vol. 520, no. 1, pp. 1–19, Jun. 2011, doi: 10.1016/j.tca.2011.03.034. [22] N. Ghodhbani, P. Maréchal, and H. Duflo, Ultrasound monitoring of the cure kinetics of an epoxy resin: Identification, frequency and temperature dependence, Polym. Test., vol. 56, pp. 156–166, Dec. 2016, doi: 10.1016/j.polymertesting.2016.10.009. [23] J. González-Benito, The nature of the structural gradient in epoxy curing at a glass fiber/epoxy matrix interface using FTIR imaging, J. Colloid Interface Sci., vol. 267, no. 2, pp. 326–332, Nov. 2003, doi: 10.1016/S0021-9797(03)00550-2

Conference: SAMPE NEXUS 2021

Publication Date: 2021/06/29

SKU: TP21-0000000576

Pages: 9

Price: FREE

Get This Paper