Get This Paper

High Velocity Impact of Toughened Epoxy Resin Systems in Glass Fiber Reinforced Composites


Title: High Velocity Impact of Toughened Epoxy Resin Systems in Glass Fiber Reinforced Composites

Authors: Brendan A. Patterson, Casey Busch, Daniel B. Knorr, Jr.

DOI: 10.33599/nasampe/s.21.0609

Abstract: Toughening mechanisms of different polymer resins were explored for fiber reinforced composites under high velocity impact testing. Previous research demonstrated the critical importance of polymer molecular architecture and temperature-dependent viscoelastic behavior on impact performance by altering the damage mechanisms observed in both polymer-only and fiber reinforced composite testing. Combining these aspects creates a design space for performance optimization, particularly for reducing damage area due to delamination while retaining energy absorption over a broad range of temperatures. Epoxy resins that were either rubber toughened or intrinsically tough (i.e., a nanoscale phase‐separated epoxy) were used to fabricate fiber reinforced composites with plain weave S-2 glass fibers using VARTM. The resulting composites were tested under high velocity impact over a temperature range of -50°C to 75°C and were compared to composites made from conventional, non-toughened epoxy resins. Overall, the total energy absorption stayed fairly constant for each toughened resin system over the temperature range of interest and were comparable from system to system. The damage area, however, decreased by more than 50% for the phase separated epoxy relative to the rubber toughened system, because of a change in deformation mechanism. The change in damage area without a decrease in total energy absorption implies that composite deformation mechanisms can be tailored by rational design of the polymer matrix molecular architecture to improve high-rate impact performance of fiber reinforced composites.

References: 1 Wilkins, M. (California Univ., Livermore (USA). Lawrence Livermore Lab., 1967). 2 Wilkins, M. L., Cline, C. F. & Honodel, C. A. Fourth Progress Report of Light Armor Program. Report No. UCRL-50694, (University of California Livermore, Livermore, CA, 1969). 3 DeLuca, E., Prifti, J., Betheney, W. & Chou, S. C. Ballistic impact damage of S 2-glass-reinforced plastic structural armor. Composites Science and Technology 58, 1453-1461, doi:10.1016/S0266-3538(98)00029-3 (1998). 4 Hazell, P. J. & Appleby-Thomas, G. J. The impact of structural composite materials. Part 1: ballistic impact. J. Strain Anal. Eng. Des. 47, 396-405, doi:10.1177/0309324712448298 (2012). 5 Scott, B. in Lightweight ballistic composites 336-363 (Elsevier, 2006). 6 Yee, A. F. & Pearson, R. A. Toughening mechanisms in elastomer-modified epoxies. Journal of materials science 21, 2462-2474, doi:10.1007/BF01114293 (1986). 7 Kinloch, A., Shaw, S., Tod, D. & Hunston, D. Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies. Polymer 24, 1341-1354, doi:10.1016/0032-3861(83)90070-8 (1983). 8 Bagheri, R., Marouf, B. & Pearson, R. Rubber-toughened epoxies: a critical review. Journal of Macromolecular Science®, Part C: Polymer Reviews 49, 201-225, doi:10.1080/15583720903048227 (2009). 9 Wang, M. L., McAninch, I. M. & La Scala, J. J. Materials characterization of high-temperature epoxy resins: SC-79 and SC-15/SC-79 Blend. (Army Research Laboratory; Aberdeen Proving Ground, MD; Weapons and Materials Research Directorate, 2011). 10 Bain, E. D. et al. Failure processes governing high-rate impact resistance of epoxy resins filled with core–shell rubber nanoparticles. Journal of Materials Science 51, 2347-2370, doi:10.1007/s10853-015-9544-5 (2016). 11 Caldwell, K. B. & Berg, J. C. Nanoparticles as Interphase Modifi ers in Fiber Reinforced Polymeric Composites: A Critical Review. Reviews of Adhesion and Adhesives 5, 1-54, doi:10.7569/RAA.2017.097301 (2017). 12 Kinloch, A., Masania, K., Taylor, A., Sprenger, S. & Egan, D. The fracture of glass-fibre-reinforced epoxy composites using nanoparticle-modified matrices. Journal of Materials Science 43, 1151-1154, doi:10.1007/s10853-007-2390-3 (2008). 13 McAninch, I. M., Palmese, G. R., Lenhart, J. L. & La Scala, J. J. Characterization of epoxies cured with bimodal blends of polyetheramines. Journal of Applied Polymer Science 130, 1621-1631, doi:10.1002/app.39322 (2013). 14 Masser, K. A. et al. Relating structure and chain dynamics to ballistic performance in transparent epoxy networks exhibiting nanometer scale heterogeneity. Polymer 58, 96-106, doi:10.1016/j.polymer.2014.12.027 (2015). 15 Masser, K. A., Knorr Jr, D. B., Yu, J. H., Hindenlang, M. D. & Lenhart, J. L. Dynamic heterogeneity in epoxy networks for protection applications. Journal of Applied Polymer Science 133, doi:10.1002/app.43566 (2016). 16 Masser, K. A. et al. Influence of nano-scale morphology on impact toughness of epoxy blends. Polymer 103, 337-346, doi:10.1016/j.polymer.2016.09.076 (2016). 17 Foster, M., Masser, K. A. & Lenhart, J. L. Tensile properties and rate dependence of a dual amine epoxy network. Journal of Dynamic Behavior of Materials 2, 112-121, doi:10.1007/s40870-016-0054-6 (2016). 18 O’Neill, J. A. et al. in Dynamic Behavior of Materials, Volume 1 51-58 (Springer, 2017). 19 Masser, K. A. et al. The temperature‐dependent ballistic performance and the ductile‐to‐brittle transition in polymer networks. Journal of Polymer Science Part B: Polymer Physics 57, 511-523, doi:10.1002/polb.24807 (2019). 20 Masser, K. A. & Zellner, M. B. Observations of compression and fracture in polymer networks subjected to impact loading. Engineering Fracture Mechanics 216, 106487, doi:10.1016/j.engfracmech.2019.106487 (2019). 21 MIL-STD, U. M. S. 662F, V50 Ballistic Test for Armor. US Army Research Laboratory, Weapons & Materials Research Directorate, Aberdeen Proving Ground, MD (December 1997) (1997). 22 McAninch, I. M. Molecular toughening of epoxy networks. (Drexel University, 2014). 23 VanderKlok, A. et al. An experimental investigation into the high velocity impact responses of S2-glass/SC15 epoxy composite panels with a gas gun. International Journal of Impact Engineering 111, 244-254, doi:10.1016/j.ijimpeng.2017.10.002 (2018). 24 Naik, N. & Shrirao, P. Composite structures under ballistic impact. Composite structures 66, 579-590, doi:10.1016/j.compstruct.2004.05.006 (2004). 25 Gama, B. A. et al. Punch shear behavior of thick-section composites under quasi-static, low velocity, and ballistic impact loading. SAMPE J 41, 6-13 (2005). 26 Patterson, B., Busch, C., Masser, K., Bratcher, M. & Knorr, D. in American Society of Mechanical Engineers - North America.

Conference: SAMPE NEXUS 2021

Publication Date: 2021/06/29

SKU: TP21-0000000609

Pages: 9

Price: FREE

Get This Paper