Search

DIGITAL LIBRARY: SAMPE 2023 | SEATTLE, WA | APRIL 17-20

Get This Paper

HYBRIDIZED MODEL FOR TEMPERATURE PREDICTION IN AUTOMATED FIBER PLACEMENT

Description

Title: HYBRIDIZED MODEL FOR TEMPERATURE PREDICTION IN AUTOMATED FIBER PLACEMENT

Authors: Matthew J. Godbold, Ben J. Francis, Alex R. Brasington, Ramy Harik

DOI: 10.33599/nasampe/s.23.0016

Abstract: Automated Fiber Placement (AFP) is an advanced manufacturing technique for industrial-scale composite structures. When using AFP, there are a multitude of inputs and factors that can impact the final quality of the structure. To ensure interlaminar strength and optimal interface between the incoming tows and the substrate, the AFP head utilizes a heating element to induce resin tackiness. Attempts at modeling heat within AFP currently utilize physics and multiphysics-based modeling (PBM) strategies. However, PBM often falls short due to the interactions of countless parameters and prevalence of unknown variables, namely material related. This paper will present a hybridized temperature model for AFP, where data-driven modeling (DDM) predicts the applied temperature informing PBM methods for evaluation of temperature distribution and evolution. Data will be collected through experimentation for development of the models and a virtual case-study will be performed to assess the validity of the DDM and the full hybridized physics-data model. To demonstrate the benefits of such an integration, a case-study is executed on a complex curvature tool.

References: [1] G. Rousseau, R. Wehbe, J. Halbritter, and R. Harik, “Automated fiber placement path planning: A state-of-the-art review,” Computer-Aided Design and Applications, vol. 16, no. 2. CAD Solutions, LLC, pp. 172–203, 2019. doi: 10.14733/cadaps.2019.172-203. [2] Z. August, G. Ostrander, J. Michasiow, and D. Hauber, “Recent Developments in Automated Fiber Placement of Thermoplastic Composites Article in Sampe Journal,” 2014. [Online]. Available: https://www.researchgate.net/publication/284671146 [3] K. J. Ahn, J. C. Seferis, T. Pelton, and M. Wilhelm, “Analysis and Characterization of Prepreg Tack.” [4] R. J. Crossley, P. J. Schubel, and N. A. Warrior, “The experimental determination of prepreg tack and dynamic stiffness,” Compos Part A Appl Sci Manuf, vol. 43, no. 3, pp. 423–434, Mar. 2012, doi: 10.1016/j.compositesa.2011.10.014. [5] O. Dubois, J. B. le Cam, and A. Béakou, “Experimental analysis of prepreg tack,” Exp Mech, vol. 50, no. 5, pp. 599–606, Jun. 2010, doi: 10.1007/s11340-009-9236-7. [6] A. Endruweit, D. S. A. de Focatiis, S. Ghose, B. A. Johnson, D. R. Younkin, and N. A. Warrior, “CHARACTERIZATION OF PREPREG TACK TO AID AUTOMATED MATERIAL PLACEMENT.” [7] N. Hassan, J. E. Thompson, R. C. Batra, A. B. Hulcher, X. Song, and A. C. Loos, “A heat transfer analysis of the fiber placement composite manufacturing process,” Journal of Reinforced Plastics and Composites, vol. 24, no. 8, pp. 869–888, 2005, doi: 10.1177/0731684405047773. [8] L. Zacherl, F. Shadmehri, and K. Rother, “Determination of convective heat transfer coefficient for hot gas torch (HGT)-assisted automated fiber placement (AFP) for thermoplastic composites,” Journal of Thermoplastic Composite Materials, 2021, doi: 10.1177/0892705720982363. [9] O. Baho, G. Ausias, Y. Grohens, and J. Férec, “Simulation of laser heating distribution for a thermoplastic composite: effects of AFP head parameters,” International Journal of Advanced Manufacturing Technology, vol. 110, no. 7–8, pp. 2105–2117, Sep. 2020, doi: 10.1007/s00170-020-05876-9. [10] C. M. Stokes-Griffin and P. Compston, “A combined optical-thermal model for near-infrared laser heating of thermoplastic composites in an automated tape placement process,” Compos Part A Appl Sci Manuf, vol. 75, pp. 104–115, May 2015, doi: 10.1016/j.compositesa.2014.08.006. [11] R. Lichtinger, P. Hörmann, D. Stelzl, and R. Hinterhölzl, “The effects of heat input on adjacent paths during Automated Fibre Placement,” Compos Part A Appl Sci Manuf, vol. 68, pp. 387–397, 2015, doi: 10.1016/j.compositesa.2014.10.004. [12] A. Danezis, D. Williams, M. Edwards, and A. A. Skordos, “Heat transfer modelling of flashlamp heating for automated tape placement of thermoplastic composites,” Compos Part A Appl Sci Manuf, vol. 145, p. 106381, Jun. 2021, doi: 10.1016/J.COMPOSITESA.2021.106381. [13] O. A. Tafreshi, S. van Hoa, F. Shadmehri, D. M. Hoang, and D. Rosca, “Heat transfer analysis of automated fiber placement of thermoplastic composites using a hot gas torch,” Advanced Manufacturing: Polymer and Composites Science, vol. 5, no. 4, pp. 206–223, 2019, doi: 10.1080/20550340.2019.1686820. [14] K. Xia, R. Harik, J. Herrera, J. Patel, and B. Grimsley, “Numerical Simulation of AFP Nip Point Temperature Prediction for Complex Geometries,” 2018. [15] A. Kollmannsberger, R. Lichtinger, F. Hohenester, C. Ebel, and K. Drechsler, “Numerical analysis of the temperature profile during the laser-assisted automated fiber placement of CFRP tapes with thermoplastic matrix,” Journal of Thermoplastic Composite Materials, vol. 31, no. 12, pp. 1563–1586, Dec. 2018, doi: 10.1177/0892705717738304. [16] P. Hörmann, D. Stelzl, R. Lichtinger, S. van Nieuwenhove, G. Mazón Carro, and K. Drechsler, “On the numerical prediction of radiative heat transfer for thermoset automated fiber placement,” Compos Part A Appl Sci Manuf, vol. 67, pp. 282–288, Dec. 2014, doi: 10.1016/J.COMPOSITESA.2014.08.019. [17] M. A. Khan, P. Mitschang, and R. Schledjewski, “Identification of some optimal parameters to achieve higher laminate quality through tape placement process,” in Advances in Polymer Technology, Jun. 2010, vol. 29, no. 2, pp. 98–111. doi: 10.1002/adv.20177. [18] M. Belhaj et al., “Dry fiber automated placement of carbon fibrous preforms,” Compos B Eng, vol. 50, pp. 107–111, Jul. 2013, doi: 10.1016/j.compositesb.2013.01.014. [19] “humm3 ®-Journey to industrialisation e-book [e-book] humm3 ® systems Journey to industrialisation 2.” [20] “Enabling innovation with humm3 ® discovery Flexible controllable heat solutions for composites processing.” [21] T. Becker and B. Kaus, Numerical Modeling of Earth Systems: An introduction to computational methods with focus on solid Earth applications of continuum mechanics, vol. 1.2.2. 2020. [22] T. Paviot, “PythonOCC 7.5.1.” 2022. [Online]. Available: https://github.com/tpaviot/pythonocc [23] T. Orth, M. Krahl, P. Parlevliet, and N. Modler, “Optical thermal model for LED heating in thermoset-automated fiber placement,” Advanced Manufacturing: Polymer & Composites Science, vol. 4, no. 3, pp. 73–82, 2018, doi: 10.1080/20550340.2018.1507798. [24] “Invar 36® Alloy Technical Datasheet,” 2004.

Conference: SAMPE 2023

Publication Date: 2023/04/17

SKU: TP23-0000000016

Pages: 24

Price: $48.00

Get This Paper