Search

DIGITAL LIBRARY: SAMPE 2023 | SEATTLE, WA | APRIL 17-20

Get This Paper

THERMAL PERFORMANCE AND INTERPLY BONDING OF BORON NITRIDE NANOTUBE/CARBON FIBER HYBRID COMPOSITES

Description

Title: THERMAL PERFORMANCE AND INTERPLY BONDING OF BORON NITRIDE NANOTUBE/CARBON FIBER HYBRID COMPOSITES

Authors: Aspen N. Reyes, Mehul Tank, Mitesh Patadia, Rebekah Sweat

DOI: 10.33599/nasampe/s.23.0078

Abstract: High-temperature composite materials are exceedingly crucial in applications such as hypersonic and reentry vehicles due to large heat fluxes and a high degree of aerodynamic heating. Ceramics and metal alloys are used currently but can exhibit high densities, inadequate oxidation, thermal shock, and impact resistance. A combination of extreme thermal stability, high thermal conductivity, and excellent mechanical properties make boron nitride nanotubes (BNNTs) an attractive nanofiller in integrated and structural high-temperature applications. In this study, hybrids with unidirectional carbon fiber (CF) and BNNT layers with a toughened epoxy matrix were manufactured via autoclaving. A BNNT inter-ply hybrid containing alternating CF and BNNT layers was prepared. BNNTs have excellent interfacial bonding with matrices; therefore, they can act as a pseudo-reinforcement in the z-direction, similar to stitching. Three-point bend and short beam shear mechanical testing were performed to evaluate the interlaminar strength of the interlayer hybrid composite. Post-test fracture analysis and crack propagation reveal excellent BNNT adhesion. Thermal diffusivity performance showed consistent improvement across the temperature range up to 150°C. Ultimately, hybrid BNNT/CF composites are promising candidates for lightweight, delamination-resistant high-temperature applications.

References: [1] X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, “Stability and Band Gap Constancy of Boron Nitride Nanotubes,” Europhys. Lett. EPL, vol. 28, no. 5, pp. 335–340, Nov. 1994, doi: 10.1209/0295-5075/28/5/007. [2] A. Rubio, J. L. Corkill, and M. L. Cohen, “Theory of graphitic boron nitride nanotubes,” Phys. Rev. B, vol. 49, no. 7, pp. 5081–5084, Feb. 1994, doi: 10.1103/PhysRevB.49.5081. [3] N. G. Chopra et al., “Boron Nitride Nanotubes,” vol. 269, no. 5226, Aug. 1995, [Online]. Available: https://www.jstor.org/stable/2887709 [4] X. Wei, M.-S. Wang, Y. Bando, and D. Golberg, “Tensile Tests on Individual Multi-Walled Boron Nitride Nanotubes,” Adv. Mater., vol. 22, no. 43, pp. 4895–4899, Nov. 2010, doi: 10.1002/adma.201001829. [5] N. G. Chopra and A. Zettl, “MEASUREMENT OF THE ELASTIC MODULUS OF A MULTI-WALL BORON NITRIDE NANOTUBE,” Solid State Commun., vol. 105, no. 5, 1998. [6] R. Arenal, M.-S. Wang, Z. Xu, A. Loiseau, and D. Golberg, “Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled boron nitride nanotubes,” Nanotechnology, vol. 22, no. 26, p. 265704, Jul. 2011, doi: 10.1088/0957-4484/22/26/265704. [7] A. E. Tanur, J. Wang, A. L. M. Reddy, D. N. Lamont, Y. K. Yap, and G. C. Walker, “Diameter-Dependent Bending Modulus of Individual Multiwall Boron Nitride Nanotubes,” J. Phys. Chem. B, vol. 117, no. 16, pp. 4618–4625, Apr. 2013, doi: 10.1021/jp308893s. [8] X. Chen, C. M. Dmuchowski, C. Park, C. C. Fay, and C. Ke, “Quantitative Characterization of Structural and Mechanical Properties of Boron Nitride Nanotubes in High Temperature Environments,” Sci. Rep., vol. 7, no. 1, p. 11388, Dec. 2017, doi: 10.1038/s41598-017-11795-9. [9] Y. Chen, J. Zou, S. J. Campbell, and G. Le Caer, “Boron nitride nanotubes: Pronounced resistance to oxidation,” Appl. Phys. Lett., vol. 84, no. 13, pp. 2430–2432, Mar. 2004, doi: 10.1063/1.1667278. [10] “In Situ TEM Monitoring of Thermal Decomposition in Individual Boron Nitride Nanotubes. Hessam M Ghassemi, Chee H. Lee, Yoke K. Yap, and Reza S. Yassar.” [11] M. J. Tank et al., “Extreme Thermal Stability and Dissociation Mechanisms of Purified Boron Nitride Nanotubes: Implications for High-Temperature Nanocomposites,” ACS Appl. Nano Mater., Aug. 2022, doi: 10.1021/acsanm.2c01965. [12] C. W. Chang et al., “Isotope Effect on the Thermal Conductivity of Boron Nitride Nanotubes,” Phys. Rev. Lett., vol. 97, no. 8, p. 085901, Aug. 2006, doi: 10.1103/PhysRevLett.97.085901. [13] J. Cumings and A. Zettl, “Field emission and current-voltage properties of boron nitride nanotubes,” Solid State Commun., vol. 129, no. 10, pp. 661–664, Mar. 2004, doi: 10.1016/j.ssc.2003.11.026. [14] C. H. Lee, M. Xie, V. Kayastha, J. Wang, and Y. K. Yap, “Patterned Growth of Boron Nitride Nanotubes by Catalytic Chemical Vapor Deposition,” Chem. Mater., vol. 22, no. 5, pp. 1782–1787, Mar. 2010, doi: 10.1021/cm903287u. [15] J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, “Electronic structure of atomically resolved carbon nanotubes,” Nature, vol. 391, no. 6662, pp. 59–62, Jan. 1998, doi: 10.1038/34139. [16] E. Cheraghi, S. Chen, and J. T. W. Yeow, “Boron Nitride-Based Nanomaterials for Radiation Shielding: A Review,” IEEE Nanotechnol. Mag., vol. 15, no. 3, pp. 8–17, Jun. 2021, doi: 10.1109/MNANO.2021.3066390. [17] M. Ghazizadeh, J. E. Estevez, A. D. Kelkar, and Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University and University of North Carolina at Greensboro, USA., “Boron Nitride Nanotubes for Space Radiation Shielding,” Int. J. Nano Stud. Technol., pp. 1–2, Jul. 2015, doi: 10.19070/2167-8685-150007e. [18] J. E. Estevez, M. Ghazizadeh, J. G. Ryan, and A. D. Kelkar, “Simulation of Hydrogenated Boron Nitride Nanotube’s Mechanical Properties for Radiation Shielding Applications,” vol. 8, no. 1, p. 5, 2014. [19] B. Ashrafi et al., “Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes,” Acta Astronaut., vol. 141, pp. 57–63, Dec. 2017, doi: 10.1016/j.actaastro.2017.09.023. [20] M. Rahmat et al., “Enhanced Shear Performance of Hybrid Glass Fiber–Epoxy Laminates Modified with Boron Nitride Nanotubes,” ACS Appl. Nano Mater., vol. 1, no. 6, pp. 2709–2717, Jun. 2018, doi: 10.1021/acsanm.8b00413. [21] M. Rahmat, M. B. Jakubinek, B. Ashrafi, Y. Martinez-Rubi, and B. Simard, “Glass Fiber–Epoxy Composites with Boron Nitride Nanotubes for Enhancing Interlaminar Properties in Structures,” ACS Omega, p. acsomega.2c00365, Mar. 2022, doi: 10.1021/acsomega.2c00365. [22] Y. Takizawa and D. D. L. Chung, “Through-thickness thermal conduction in glass fiber polymer–matrix composites and its enhancement by composite modification,” J. Mater. Sci., vol. 51, no. 7, pp. 3463–3480, Apr. 2016, doi: 10.1007/s10853-015-9665-x. [23] S. Wang et al., “Carbon Fiber/Carbon Nanotube Buckypaper Interply Hybrid Composites: Manufacturing Process and Tensile Properties,” Adv. Eng. Mater., vol. 17, no. 10, pp. 1442–1453, 2015, doi: 10.1002/adem.201500034. [24] M. S. Amin, T. E. Molin, C. Tampubolon, D. E. Kranbuehl, and H. C. Schniepp, “Boron Nitride Nanotube Impurity Detection and Purity Verification,” Chem. Mater., vol. 32, no. 21, pp. 9090–9097, Nov. 2020, doi: 10.1021/acs.chemmater.0c03609. [25] H. F. Rizzo, “Oxidation of Boron at Temperatures between 400 and 1300°C in Air,” in Boron Synthesis, Structure, and Properties, Boston, MA: Springer US, 1960, pp. 175–189. doi: 10.1007/978-1-4899-6572-1_21. [26] A. Jain, K. Joseph, S. Anthonysamy, and G. S. Gupta, “Kinetics of oxidation of boron powder,” Thermochim. Acta, vol. 514, no. 1–2, pp. 67–73, Feb. 2011, doi: 10.1016/j.tca.2010.12.004.

Conference: SAMPE 2023

Publication Date: 2023/04/17

SKU: TP23-0000000078

Pages: 14

Price: $28.00

Get This Paper