Title: POLYPHENYLENE SULFIDE NANOCOMPOSITES TO ENABLE HIGH-RATE THERMOPLASTIC COMPOSITE MANUFACTURING
Authors: Lina N. Ghanbari, Joseph P. Previte, Dr. Olivia D. McNair, Dr. Jeffrey Wiggins
DOI: 10.33599/nasampe/s.23.0093
Abstract: When designing next generation, fuel efficient aircraft, weight must be minimized and manufacturing efficiency must improve, justifying the adoption of thermoplastic composites (TPCs). Among these materials, polyphenylene sulfide (PPS) offers a solution to achieve low weight, high throughput TPCs due to rapid cycle times and the ability to be joined through fusion bonding. Induction welding is a fusion bonding technique that employs electromagnetic fields to induce heating within CFRP laminates through interactions with electrically conductive domains (i.e. the carbon fiber). This process is limited by the insulating nature of the PPS surrounding the carbon fiber, therefore requiring slower weld speeds and wasted energy. Here, we examine a potential method for improving the efficacy of induction welding – increasing the electrical conductivity of the PPS matrix through the addition of multi-wall carbon nanotubes (MWCNT). Results indicate that CNTs improve the electrical conductivity of neat PPS by 12 orders of magnitude, while increasing the zero shear viscosity by 3 orders of magnitude. The addition of MWCNT shifted the onset of crystallization of PPS to higher temperatures indicating faster nucleation, with no apparent change in the crystalline structure.
References: (1) Strong, A. B. Fundamentals of Composite Manufacturing Materials, Methods and Applications, Second.; Society of Manufacturing Engineers: Dearborn, Michigan. (2) Chen, G.; Mohanty, A. K.; Misra, M. Progress in Research and Applications of Polyphenylene Sulfide Blends and Composites with Carbons. Compos. Part B Eng. 2021, 209, 108553. https://doi.org/10.1016/j.compositesb.2020.108553. (3) Dydek, K.; Latko-Durałek, P.; Sulowska, A.; Kubiś, M.; Demski, S.; Kozera, P.; Sztorch, B.; Boczkowska, A. Effect of Processing Temperature and the Content of Carbon Nanotubes on the Properties of Nanocomposites Based on Polyphenylene Sulfide. Polymers 2021, 13 (21), 3816. https://doi.org/10.3390/polym13213816. (4) Xing, J.; Xu, Z.; Ni, Q.-Q.; Ke, H. Preparation and Characterization of Polyphenylene Sulfide/Graphene Nanoplatelets Composite Fibers with Enhanced Oxidation Resistance. High Perform. Polym. 2020, 32 (4), 394–405. https://doi.org/10.1177/0954008319867748. (5) Jamali, S.; Paiva, M. C.; Covas, J. A. Dispersion and Re-Agglomeration Phenomena during Melt Mixing of Polypropylene with Multi-Wall Carbon Nanotubes. Polym. Test. 2013, 32 (4), 701–707. https://doi.org/10.1016/j.polymertesting.2013.03.005. (6) Grady, B. P. Effects of Carbon Nanotubes on Polymer Physics. J. Polym. Sci. Part B Polym. Phys. 2012, 50 (9), 591–623. https://doi.org/10.1002/polb.23052. (7) Advani, S. G. Processing and Properties of Nanocomposites; World Scientific Publishing Co Pte Ltd: Singapore, SINGAPORE, 2007. (8) Brady, D. G. The Crystallinity of Poly(Phenylene Sulfide) and Its Effect on Polymer Properties. J. Appl. Polym. Sci. 1976, 20 (9), 2541–2551. https://doi.org/10.1002/app.1976.070200921. (9) Desio, G. P.; Rebenfeld, L. Effects of Fibers on the Crystallization of Poly(Phenylene Sulfide). J. Appl. Polym. Sci. 1990, 39 (4), 825–835. https://doi.org/10.1002/app.1990.070390405. (10) Hiemenz, P. C.; Lodge, T. P. Polymer Chemistry; CRC Press, 2007. (11) Ahmed, T. J.; Stavrov, D.; Bersee, H. E. N.; Beukers, A. Induction Welding of Thermoplastic Composites an Overview. Compos. Part Appl. Sci. Manuf. 2006, 37 (10), 1638–1651. https://doi.org/10.1016/j.compositesa.2005.10.009. (12) Naffakh, M.; Díez-Pascual, A. M.; Marco, C.; Ellis, G. Morphology and Thermal Properties of Novel Poly(Phenylene Sulfide) Hybrid Nanocomposites Based on Single-Walled Carbon Nanotubes and Inorganic Fullerene-like WS 2 Nanoparticles. J Mater Chem 2012, 22 (4), 1418–1425. https://doi.org/10.1039/C1JM12543E. (13) Singh, D. K.; Iyer, P. K.; Giri, P. K. Diameter Dependence of Interwall Separation and Strain in Multiwalled Carbon Nanotubes Probed by X-Ray Diffraction and Raman Scattering Studies. Diam. Relat. Mater. 2010, 19 (10), 1281–1288. https://doi.org/10.1016/j.diamond.2010.06.003. (14) Yang, J.; Xu, T.; Lu, A.; Zhang, Q.; Fu, Q. Electrical Properties of Poly(Phenylene Sulfide)/Multiwalled Carbon Nanotube Composites Prepared by Simple Mixing and Compression. J. Appl. Polym. Sci. 2008, 109 (2), 720–726. https://doi.org/10.1002/app.28098. (15) Rahate, A. S.; Nemade, K. R.; Waghuley, S. A. Polyphenylene Sulfide (PPS): State of the Art and Applications. Rev. Chem. Eng. 2013, 29 (6). https://doi.org/10.1515/revce-2012-0021. (16) Yang, J.; Xu, T.; Lu, A.; Zhang, Q.; Tan, H.; Fu, Q. Preparation and Properties of Poly (p-Phenylene Sulfide)/Multiwall Carbon Nanotube Composites Obtained by Melt Compounding. Compos. Sci. Technol. 2009, 69 (2), 147–153. https://doi.org/10.1016/j.compscitech.2008.08.030. (17) Yu, S.; Wong, W. M.; Hu, X.; Juay, Y. K. The Characteristics of Carbon Nanotube-Reinforced Poly(Phenylene Sulfide) Nanocomposites. J. Appl. Polym. Sci. 2009, 113 (6), 3477–3483. https://doi.org/10.1002/app.30191. (18) Han, M. S.; Lee, Y. K.; Lee, H. S.; Yun, C. H.; Kim, W. N. Electrical, Morphological and Rheological Properties of Carbon Nanotube Composites with Polyethylene and Poly(Phenylene Sulfide) by Melt Mixing. Chem. Eng. Sci. 2009, 64 (22), 4649–4656. https://doi.org/10.1016/j.ces.2009.02.026.
Conference: SAMPE 2023
Publication Date: 2023/04/17
SKU: TP23-0000000093
Pages: 9
Price: $18.00
Get This Paper