Get This Paper




Authors: Amir Nazemi, Milad Ramezankhani, Marian Kӧrber, Abbas S. Milani

DOI: 10.33599/nasampe/s.23.0211

Abstract: High formability is known to be one of the key advantages of woven fabric composites, making them prevalent in many industrial applications to manufacture products with complex 3D shapes. In parallel, attempts are underway by different researchers to automate such forming processes under the emerging Industry 4.0 paradigm. However, there are different types of defects, including wrinkling, that often occur during fabric forming and handling; and thereby for an Industry 4.0 realization, the process variables need to be optimized nearly in real-time. Accordingly, this requires very fast yet reliable numerical simulation tools to predict the defects and be used as part of the digital twinning of the process, where conventional tools like finite element models frequently fall short due to their high computational time. This study investigates the potential application of a material point method (MPM) for rapid simulation of fabric composites’ forming. Both stability and computational efficiency of the method, along with its limitations, have been compared to a finite element model via a hemisphere forming case study.

References: [1] D. Sulsky, S.-J. Zhou, and H. L. Schreyer, “Application of a particle-in-cell method to solid mechanics,” Comput. Phys. Commun., vol. 87, no. 1, pp. 236–252, 1995, doi: [2] J. U. Brackbill and H. M. Ruppel, “FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions,” J. Comput. Phys., vol. 65, no. 2, pp. 314–343, 1986, doi: [3] F. H. Harlow, “Hydrodynamic Problems Involving Large Fluid Distortions,” J. ACM, vol. 4, no. 2, pp. 137–142, Apr. 1957, doi: 10.1145/320868.320871. [4] D. Sulsky and M. Gong, “Improving the material-point method,” Lect. Notes Appl. Comput. Mech., vol. 81, pp. 217–240, 2016, doi: 10.1007/978-3-319-39022-2_10. [5] R. Tavana, S. S. Najar, M. T. Abadi, and M. Sedighi, “Meso/macro-scale finite element model for forming process of woven fabric reinforcements,” J. Compos. Mater., vol. 47, no. 17, pp. 2075–2085, 2013, doi: 10.1177/0021998312454034. [6] P. Boisse, B. Zouari, and A. Gasser, “A mesoscopic approach for the simulation of woven fibre composite forming,” Compos. Sci. Technol. - Compos. SCI TECHNOL, vol. 65, pp. 429–436, 2005, doi: 10.1016/j.compscitech.2004.09.024. [7] T. J. Dodwell, R. Butler, and G. W. Hunt, “Out-of-plane ply wrinkling defects during consolidation over an external radius,” Compos. Sci. Technol., vol. 105, pp. 151–159, 2014, doi: [8] P. Hallander, M. Akermo, C. Mattei, M. Petersson, and T. Nyman, “An experimental study of mechanisms behind wrinkle development during forming of composite laminates,” Compos. Part A Appl. Sci. Manuf., vol. 50, pp. 54–64, 2013, doi: [9] J. S. Lightfoot, M. R. Wisnom, and K. Potter, “A new mechanism for the formation of ply wrinkles due to shear between plies,” Compos. Part A Appl. Sci. Manuf., vol. 49, pp. 139–147, 2013, doi: [10] F. T. Peirce, “26—The ‘handle’ of cloth as a measurable quantity,” J. Text. Inst. Trans., vol. 21, no. 9, pp. T377–T416, 1930, doi: 10.1080/19447023008661529. [11] B. Liang, P. Chaudet, and P. Boisse, “Curvature determination in the bending test of continuous fibre reinforcements,” Strain, vol. 53, no. 1, p. e12213, 2017, doi: [12] P. Boisse, N. Hamila, F. Helenon, B. Hagege, and J. Cao, “Different approaches for woven composite reinforcement forming simulation,” Int. J. Mater. Form., vol. 1, pp. 21–29, 2008, doi: 10.1007/s12289-008-0002-7. [13] H. Lin, J. Wang, A. C. Long, M. J. Clifford, and P. Harrison, “Predictive modelling for optimization of textile composite forming,” Compos. Sci. Technol., vol. 67, no. 15, pp. 3242–3252, 2007, doi: [14] A. Skordos, C. Aceves, and M. Sutcliffe, “A simplified rate dependent model of forming and wrinkling of pre-impregnated woven composites,” Compos. Part A Appl. Sci. Manuf., vol. 38, pp. 1318–1330, 2007, doi: 10.1016/j.compositesa.2006.11.005. [15] P. Boisse, “Simulations of Composite Reinforcement Forming,” Woven Fabr. Eng., 2010, doi: 10.5772/10460. [16] P. Grosberg, “The Mechanical Properties of Woven Fabrics Part II: The Bending of Woven Fabrics,” Text. Res. J., vol. 36, no. 3, pp. 205–211, 1966, doi: 10.1177/004051756603600301. [17] P. Grosberg and N. M. Swani, “The Mechanical Properties of Woven Fabrics: Part III: The Buckling of Woven Fabrics,” Text. Res. J., vol. 36, no. 4, pp. 332–338, 1966, doi: 10.1177/004051756603600405. [18] S. Kawabata, M. Niwa, and H. Kawai, “3—THE FINITE-DEFORMATION THEORY OF PLAIN-WEAVE FABRICS PART I: THE BIAXIAL-DEFORMATION THEORY,” J. Text. Inst., vol. 64, no. 1, pp. 21–46, 1973, doi: 10.1080/00405007308630416. [19] P. Xue, X. Peng, and J. Cao, “A non-orthogonal constitutive model for characterizing woven composites,” Compos. Part A Appl. Sci. Manuf., vol. 34, pp. 183–193, 2003, doi: 10.1016/S1359-835X(02)00052-0. [20] M. Komeili and A. S. Milani, “On effect of shear-tension coupling in forming simulation of woven fabric reinforcements,” Compos. Part B Eng., vol. 99, pp. 17–29, 2016, doi: [21] S. Ahmad, B. M. Irons, and O. C. Zienkiewicz, “Analysis of thick and thin shell structures by curved finite elements,” Int. J. Numer. Methods Eng., vol. 2, no. 3, pp. 419–451, 1970, doi: [22] T. Abdul Ghafour, J. Colmars, and P. Boisse, “The importance of taking into account behavior irreversibilities when simulating the forming of textile composite reinforcements,” Compos. Part A Appl. Sci. Manuf., vol. 127, p. 105641, 2019, doi: [23] M. R. Garnich and N. A. Klymyshyn, “Multiscale analysis of stamp forming of a woven composite,” J. Thermoplast. Compos. Mater., vol. 26, no. 5, pp. 640–662, 2013, doi: 10.1177/0892705711428654. [24] D. Durville, “Finite element simulation of textile materials at mesoscopic scale,” in Finite element modelling of textiles ans textile composites, Sep. 2007, p. CDROM, [Online]. Available: [25] Q. Zhang, J. Cai, and Q. Gao, “Simulation and experimental study on thermal deep drawing of carbon fiber woven composites,” J. Mater. Process. Technol., vol. 214, no. 4, pp. 802–810, 2014, doi: [26] N. Hamila and P. Boisse, “A Meso–Macro Three Node Finite Element for Draping of Textile Composite Preforms,” Appl. Compos. Mater., vol. 14, no. 4, pp. 235–250, 2007, doi: 10.1007/s10443-007-9043-1. [27] D. Terzopoulos and K. Fleischer, “Deformable models,” Vis. Comput., vol. 4, no. 6, pp. 306–331, 1988, doi: 10.1007/BF01908877. [28] P. Volino and N. M. Thalmann, “Developing simulation techniques for an interactive clothing system,” Proc. Annu. Int. Conf. Virtual Syst. Multimedia, VSMM, no. May, pp. 109–118, 1997, doi: 10.1109/vsmm.1997.622337. [29] X. Provot, “Deformation constraints in a mass-spring model to describe rigid cloth behavior,” Proc. - Graph. Interface, pp. 147–154, 1995. [30] K. J. Choi and H. S. Ko, “Stable but responsive cloth,” ACM SIGGRAPH 2005 Courses, SIGGRAPH 2005, 2005, doi: 10.1145/1198555.1198571. [31] M. Obermayr, K. Dressler, C. Vrettos, and P. Eberhard, “A bonded-particle model for cemented sand,” Comput. Geotech., vol. 49, pp. 299–313, 2013, doi: [32] ASTM D1776 / D1776M-20, “Standard Practice for Conditioning and Testing Textiles,” ASTM Int., vol. 8, pp. 5–8, 2020, doi: 10.1520/D1776. [33] M. Komeili, “Multi-scale characterization and modeling of shear-tension interaction in woven fabrics for composite forming and structural applications.” 2014, [Online]. Available: [34] J. Cao et al., “Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results,” Compos. Part A Appl. Sci. Manuf., vol. 39, no. 6, pp. 1037–1053, 2008, doi: [35] S. Timoshenko, S. Woinowsky-Krieger, and others, Theory of plates and shells, vol. 2. McGraw-hill New York, 1959. [36] P. Hubert and A. Poursartip, “Aspects of the Compaction of Composite Angle Laminates: An Experimental Investigation,” J. Compos. Mater., vol. 35, no. 1, pp. 2–26, 2001, doi: 10.1177/002199801772661849. [37] E. Syerko, S. Comas-Cardona, and C. Binetruy, “Models of mechanical properties/behavior of dry fibrous materials at various scales in bending and tension: A review,” Compos. Part A Appl. Sci. Manuf., vol. 43, pp. 1365–1388, 2012, doi: 10.1016/j.compositesa.2012.03.012. [38] M. H. Kashani, “A Coupled Non-Orthogonal Hypoelastic Constituitive Model for Simulation of Woven Fabrics,” UNIVERSITY OF BRITISH COLUMBIA (Okanagan), 2017. [39] D. Jauffrès, J. A. Sherwood, C. D. Morris, and J. Chen, “Discrete mesoscopic modeling for the simulation of woven-fabric reinforcement forming,” Int. J. Mater. Form., vol. 3, no. 2, pp. 1205–1216, 2010, doi: 10.1007/s12289-009-0646-y. [40] X. Zhao, G. Liu, M. Gong, J. Song, Y. Zhao, and S. Du, “Effect of tackification on in-plane shear behaviours of biaxial woven fabrics in bias extension test: Experiments and finite element modeling,” Compos. Sci. Technol., vol. 159, pp. 33–41, 2018, doi: [41] A. Rashidi and A. S. Milani, “Passive control of wrinkles in woven fabric preforms using a geometrical modification of blank holders,” Compos. Part A Appl. Sci. Manuf., vol. 105, pp. 300–309, 2018, doi: [42] A. Rashidi and A. S. Milani, “A multi-step biaxial bias extension test for wrinkling/de-wrinkling characterization of woven fabrics: Towards optimum forming design guidelines,” Mater. Des., vol. 146, pp. 273–285, 2018, doi: [43] A. S. Milani, J. A. Nemes, G. Lebrun, and M. N. Bureau, “A comparative analysis of a modified picture frame test for characterization of woven fabrics,” Polym. Compos., vol. 31, no. 4, pp. 561–568, 2010, doi:

Conference: SAMPE 2023

Publication Date: 2023/04/17

SKU: TP23-0000000211

Pages: 14

Price: $28.00

Get This Paper