Get This Paper




Authors: Yi Chen, Lloyd V. Smith

DOI: 10.33599/nasampe/s.23.0222

Abstract: Predicting the time-dependent and plastic deformation of adhesives using finite elements is challenging. The accuracy is dependent on the constitutive models while time dependence often leads to complicated mathematic algorithms for finite element coding. This study proposed a nonlinear viscoelastic-viscoplastic constitutive model considering the effect of hydrostatic stress on both yielding and viscoelasticity and damage variables under reversed cyclic load. The model was compared with the linear and nonlinear viscoelastic, and viscoplastic models available in ABAQUS. While the viscoelastic-viscoplastic model is more complicated than other models, only it showed good agreement with the experiment of scarf joints subjected to creep, tensile cyclic, and reversed cyclic loads. Viscoplasticity was recommended when describing the plastic deformation under varying frequencies and long-term load. The effect of hydrostatic stress on yielding and viscoelasticity was essential for predicting the compressive response.

References: Ashofteh, R. S. & Khoramishad, H. Investigation of the creep behavior of graphene oxide nanoplatelet-reinforced adhesively bonded joints. J. Adhes. Sci. Technol. 33, 561–578 (2019). 2. Ashofteh, R. S. & Khoramishad, H. Creep behavior of polymeric adhesive joints exposed to different environmental conditions. Polym. Compos. 41, 3218–3226 (2020). 3. Zhang, J., Li, H., Li, H. Y. & Wei, X. L. Uniaxial ratchetting and low-cycle fatigue failure behaviors of adhesively bonded butt-joints under cyclic tension deformation. Int. J. Adhes. Adhes. 95, 102399 (2019). 4. Goglio, L., Peroni, L., Peroni, M. & Rossetto, M. High strain-rate compression and tension behaviour of an epoxy bi-component adhesive. Int. J. Adhes. Adhes. 28, 329–339 (2008). 5. Cognard, J. Y., Davies, P., Sohier, L. & Créac’hcadec, R. A study of the non-linear behaviour of adhesively-bonded composite assemblies. Compos. Struct. 76, 34–46 (2006). 6. Thevenet, D., Créac’hcadec, R., Sohier, L. & Cognard, J. Y. Experimental analysis of the behavior of adhesively bonded joints under tensile/compression-shear cyclic loadings. Int. J. Adhes. Adhes. 44, 15–25 (2013). 7. Shen, X., Xia, Z. & Ellyin, F. Cyclic deformation behavior of an epoxy polymer. Part I: Experimental investigation. Polym. Eng. Sci. 44, 2240–2246 (2004). 8. Rabinowitz, S. & Beardmore, P. Cyclic Deformation and Fracture of Polymers. J. Mater. Sci. 9, 81–99 (1974). 9. Groth, H. L. Viscoelastic and viscoplastic stress analysis of adhesive joints. Int. J. Adhes. Adhes. 10, 207–213 (1990). 10. Nagaraja, Y. R. & Alwar, R. S. Viscoelastic analysis of an adhesive-bonded plane lap joint. Comput. Struct. 11, 621–627 (1980). 11. Cheng, F., Özsoy, Ö. Ö. & Reddy, J. N. Finite Element Modeling of Viscoelastic Behavior and Interface Damage in Adhesively Bonded Joints. Adv. Model. Des. Adhes. Bond. Syst. 23–45 (2013) doi:10.1002/9781118753682.ch2. 12. Amidi, S. & Wang, J. Three-parameter viscoelastic foundation model of adhesively bonded single-lap joints with functionally graded adherends. Eng. Struct. 170, 118–134 (2018). 13. Feng, C. W., Keong, C. W., Hsueh, Y. P., Wang, Y. Y. & Sue, H. J. Modeling of long-term creep behavior of structural epoxy adhesives. Int. J. Adhes. Adhes. 25, 427–436 (2005). 14. Meshgin, P., Choi, K. K. & Reda Taha, M. M. Experimental and analytical investigations of creep of epoxy adhesive at the concrete-FRP interfaces. Int. J. Adhes. Adhes. 29, 56–66 (2009). 15. Vleeshouwers, S., Jamieson, A. M. & Simha, R. Effect of physical aging on tensile stress relaxation and tensile creep of cured EPON 828/epoxy adhesives in the linear viscoelastic region. Polym. Eng. Sci. 29, 662–670 (1989). 16. Schapery, R. A. Further development of a thermodynamic constitutive theory: stress formulation. 69–2 (1969). 17. Henriksen, M. Nonlinear Viscoelastic Stress Analysis- a Finite Element Approach. Comput. Struct. 18, 133–139 (1984). 18. Lai, J. & Bakker, A. 3-D schapery representation for non-linear viscoelasticity and finite element implementation. Comput. Mech. 18, 182–191 (1996). 19. Knauss, W. G. Non-linear Viscoelasticity Based on Free Volume Consideration. Comput. Struct. 13, 123–128 (1981). 20. Knauss, W. G. & Emri, I. Volume Change and the Nonlinearly Thermo-Viscoelastic Constitution of Polymers. Polym. Eng. Sci. 27, 86–100 (1987). 21. Majda, P. & Skrodzewicz, J. A modified creep model of epoxy adhesive at ambient temperature. Int. J. Adhes. Adhes. 29, 396–404 (2009). 22. Choi, K. K. & Reda Taha, M. M. Rheological modeling and finite element simulation of epoxy adhesive creep in FRP-strengthened RC beams. J. Adhes. Sci. Technol. 27, 523–535 (2013). 23. Houhou, N. et al. Analysis of the nonlinear creep behavior of concrete/FRP-bonded assemblies. J. Adhes. Sci. Technol. 28, 1345–1366 (2014). 24. Badulescu, C., Germain, C., Cognard, J. Y. & Carrere, N. Characterization and modelling of the viscous behaviour of adhesives using the modified Arcan device. J. Adhes. Sci. Technol. 29, 443–461 (2015). 25. Pandey, P. C. & Narasimhan, S. Three-dimensional nonlinear analysis of adhesively bonded lap joints considering viscoplasticity in adhesives. Comput. Struct. 79, 769–783 (2001). 26. Morin, D., Haugou, G., Lauro, F., Bennani, B. & Bourel, B. Elasto-viscoplasticity Behaviour of a Structural Adhesive Under Compression Loadings at Low, Moderate and High Strain Rates. J. Dyn. Behav. Mater. 1, 124–135 (2015). 27. Poulain, X., Benzerga, A. A. & Goldberg, R. K. Finite-strain elasto-viscoplastic behavior of an epoxy resin: Experiments and modeling in the glassy regime. Int. J. Plast. 62, 138–161 (2014). 28. Motta, E. P., Reis, J. M. L. & da Costa Mattos, H. S. Analysis of the cyclic tensile behaviour of an elasto-viscoplastic polyvinylidene fluoride (PVDF). Polym. Test. 67, 503–512 (2018). 29. Xia, Z., Shen, X. & Ellyin, F. An Assessment of Nonlinearly Viscoelastic Constitutive Models for Cyclic Loading: The Effect of a General Loading/Unloading Rule. Mech. Time-Dependent Mater. 9, 281–300 (2006). 30. Krairi, A. & Doghri, I. A thermodynamically-based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage. Int. J. Plast. 60, 163–181 (2014). 31. Rocha, I. B. C. M. et al. Numerical/experimental study of the monotonic and cyclic viscoelastic/viscoplastic/fracture behavior of an epoxy resin. Int. J. Solids Struct. 168, 153–165 (2019). 32. Yves Cognard, J., Sohier, L., Créachcadec, R., Lavelle, F. & Lidon, N. Influence of the geometry of coaxial adhesive joints on the transmitted load under tensile and compression loads. Int. J. Adhes. Adhes. 37, 37–49 (2012). 33. Duncan, B. & Dean, G. Measurements and models for design with modern adhesives. Int. J. Adhes. Adhes. 23, 141–149 (2003). 34. Roland, C. M. & Casalini, R. Effect of hydrostatic pressure on the viscoelastic response of polyurea. Polymer (Guildf). 48, 5747–5752 (2007). 35. Lai, J. & Bakker, A. An Integral Constitutive Equation for Nonlinear Plasto-Viscoelastic Behavior of High-Density Polyethylene. Polym. Eng. Sci. 35, 1339–1347 (1995). 36. Yang, L., Yang, L. & Lowe, R. L. A viscoelasticity model for polymers: Time, temperature, and hydrostatic pressure dependent Young’s modulus and Poisson’s ratio across transition temperatures and pressures. Mech. Mater. 157, 103839 (2021). 37. Eslami, G., Yanes-Armas, S. & Keller, T. Energy dissipation in adhesive and bolted pultruded GFRP double-lap joints under cyclic loading. Compos. Struct. 248, 112496 (2020). 38. Balieu, R. et al. A fully coupled elastoviscoplastic damage model at finite strains for mineral filled semi-crystalline polymer. Int. J. Plast. 51, 241–270 (2013). 39. Chen, Y. Modeling of Time-Dependent Behaviors of Adhesives under Creep and Cyclic Loadings. (Washington State University, 2021). 40. Chen, Y. & Smith, L. V. Ratcheting and recovery of adhesively bonded joints under tensile cyclic loading. Mech. Time-Dependent Mater. 1–20 (2021). 41. Frederick, C. O. & Armstrong, P. J. A Mathematical represemtation of the mulitiaxial Bauschinger effect. Mater. High Temp. 24, 1–26 (2007). 42. Haj-Ali, R. M. & Muliana, A. H. Numerical finite element formulation of the Schapery non-linear viscoelastic material model. Int. J. Numer. Methods Eng. 59, 25–45 (2004). 43. Perzyna, P. Fundamental problems in viscoplasticity. in Advances in applied mechanics vol. 9 243–377 (Elsevier, 1966). 44. Chen, Y., Chen, Y. & Smith, L. V. A Viscoelastic-Viscoplastic Model for Adhesives Subjected to Reversed Cyclic Load. (2022) doi: 45. Rakic, D. & Zivkovic, M. Stress integration of the Drucker-Prager material model with kinematic hardening. Theor. Appl. Mech. 42, 201–209 (2015). 46. Chen, Y. & Smith, L. V. A nonlinear viscoelastic–viscoplastic constitutive model for adhesives under creep. Mech. Time-Dependent Mater. (2021) doi:10.1007/s11043-021-09506-z. 47. Krause, M. & Smith, L. V. Ratcheting in Structural Adhesives. Polym. Test. 97, 107154 (2021).

Conference: SAMPE 2023

Publication Date: 2023/04/17

SKU: TP23-0000000222

Pages: 18

Price: $36.00

Get This Paper