Get This Paper




Authors: Mostafa Yourdkhani, Carter Dojan, Morteza Ziaee

DOI: 10.33599/nasampe/s.23.0266

Abstract: Conventional manufacture of fiber-reinforced polymer composites relies on heating and curing the matrix thermoset resin at elevated temperatures for several hours using large autoclaves or ovens. Additionally, expensive molds or tooling are typically required to shape the constituents. In marked contrast, additive manufacturing (AM) allows flexible design and rapid, energy-efficient fabrication of composite parts with minimal tooling at a lower cost and higher design flexibility. However, integration of traditional resins with long cure cycles in AM processes is quite challenging or even impossible. We have developed a novel AM technique that can realize fast and energy-efficient fabrication of high-performance thermoset composites with minimal tooling. In our approach, we develop cure-on-demand resins that can be instantaneously cured and rigidized by a local thermal stimulus. Use of a robotic platform to feed the uncured material followed by instantaneous curing enables fast, unprecedented printing of high-quality continuous- or discontinuous carbon fiber composites in mid-air without using support materials. This novel technique is of great interest to various industries such as aerospace, automotive, and energy sectors due to its potential for reducing composite manufacturing cost and time.

References: [1] Mallick, Pankar. Fiber-Reinforced Composites: Materials, Manufacturing, and Design. CRC press, 2007. [2] Goh, G. D., Yap, Y. L., Agarwala, S. & Yeong, W. Y. "Recent progress in additive manufacturing of fiber reinforced polymer composite." Advanced Materials Technologies 4.1 (2019): 1800271. [3] Truby, R. L. & Lewis, J. A. "Printing Soft Matter in Three Dimensions." Nature 540(7633) (2016): 371-378. [4] He, X., Ding, Y., Lei, Z., Welch, S., Zhang, W., Dunn, M. & Yu, K. "3D Printing of Continuous Fiber-Reinforced Thermoset Composites." Additive Manufacturing 40 (2021): 101921. [5] Compton, B. G. & Lewis, J. A. "3D‐Printing of Lightweight Cellular Composites." Advanced Materials 26(34) (2014): 5930-5935. [6] Lewis, Jennifer. "Direct Ink Writing of 3D Functional Materials." Advanced Functional Materials 16(17) (2006): 2193-2204. [7] Guo, Y., Liu, Y., Liu, J., Zhao, J., Zhang, H. & Zhang, Z. "Shape Memory Epoxy Composites with High Mechanical Performance Manufactured by Multi-Material Direct Ink Writing." Composites Part A: Applied Science and Manufacturing 135 (2020): 105903. [8] Liu, M., Chiang, S. W., Chu, X., Li, J., Gan, L., He, Y., Li, B., Kang, F. & Du, H. "Polymer Composites with Enhanced Thermal Conductivity via Oriented Boron Nitride and Alumina Hybrid Fillers Assisted by 3-D Printing." Ceramics International 46(13) (2020): 20810-20818. [9] Hmeidat, N. S., Kemp, J. W. & Compton, B. G. "High-Strength Epoxy Nanocomposites for 3D Printing." Composites Science and Technology 160 (2018): 9-20. [10] Uitz, O., Koirala, P., Tehrani, M. & Seepersad, C. C. "Fast, Low-Energy Additive Manufacturing of Isotropic Parts via Reactive Extrusion." Additive Manufacturing 41 (2021): 101919. [11] Leguizamon, S. C., Cook, A. W. & Appelhans, L. N. "Employing Photosensitizers for Rapid Olefin Metathesis Additive Manufacturing of Poly (dicyclopentadiene)." Chemistry of Materials 33(24) (2021): 9677-9689. [12] Mantelli, A., Romani, A., Suriano, R., Diani, M., Colledani, M., Sarlin, E., Turri, S. & Levi, M. "UV-Assisted 3D Printing of Polymer Composites from Thermally and Mechanically Recycled Carbon Fibers." Polymers 13(5) (2021): 726. [13] Griffini, G., Invernizzi, M., Levi, M., Natale, G., Postiglione, G. & Turri, S. "3D-Printable CFR Polymer Composites with Dual-Cure Sequential IPNs." Polymer 91 (2016): 174-179. [14] Invernizzi, M., Natale, G., Levi, M., Turri, S., & Griffini, G. "UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites." Materials 9(7) (2016): 583. [15] Ziaee, M. & Yourdkhani, M. "Effect of Resin Staging on Frontal Polymerization of Dicyclopentadiene." Journal of Polymer Science 59(15) (2021): 1732-1739. [16] Robertson, I. D., Yourdkhani, M., Centellas, P. J., Aw, J. E., Ivanoff, D. G., Goli, E., Lloyd, E. M., Dean, L. M., Sottos, N. R., Geubelle, P. H., Moore, J.S. & White, S. R. “Rapid Energy-Efficient Manufacturing of Polymers and Composites via Frontal Polymerization.” Nature 557(7704) (2018): 223-227. [17] Aw, J. E., Zhang, X., Nelson, A. Z., Dean, L. M., Yourdkhani, M., Ewoldt, R. H., Geubelle, P. H. & Sottos, N. R. "Self‐Regulative Direct Ink Writing of Frontally Polymerizing Thermoset Polymers." Advanced Materials Technologies (2022): 2200230. [18] Ziaee, M., Johnson, J. W. & Yourdkhani, M. “3D Printing of Short-Carbon-Fiber-Reinforced Thermoset Polymer Composites via Frontal Polymerization." ACS Applied Materials & Interfaces 14(14) (2022): 16694-16702. [19] Zhang, Z., Liu, R., Li, W., Liu, Y., Luo, H., Zeng, L., Qiu, J. & Wang, S. "Direct Writing of Continuous Carbon Fibers/Epoxy Thermoset Composites with High-Strength and Low Energy-Consumption." Additive Manufacturing 47 (2021): 102348. [20] Fortenbaugh, R. J., Carrozzi, S. A. & Lear, B. J. "Photothermal Control over the Mechanical and Physical Properties of Polydimethylsiloxane." Macromolecules 52(10) (2019): 3839-3844. [21] Lei, T., Fernandez-Fernandez, A., Manchanda, R., Huang, Y. C. & McGoron, A. J. "Near-Infrared Dye Loaded Polymeric Nanoparticles for Cancer Imaging and Therapy and Cellular Response after Laser-Induced Heating." Beilstein Journal of Nanotechnology 5(1) (2014): 313-322. [22] Zhou, B., Li, Y., Niu, G., Lan, M., Jia, Q. & Liang, Q. "Near-infrared Organic Dye-Based Nanoagent for the Photothermal Therapy of Cancer." ACS Applied Materials & Interfaces 8(44) (2016): 29899-29905. [23] Pimentel-Domínguez, R., Velázquez-Benítez, A. M., Vélez-Cordero, J. R., Hautefeuille, M., Sánchez-Arévalo, F. & Hernández-Cordero, J. "Photothermal Effects and Applications of Polydimethylsiloxane Membranes with Carbon Nanoparticles." Polymers 8(4) (2016): 84. [24] Sharma, S. & Luzinov, I. "Ultrasonic Curing of One-Part Epoxy System." Journal of Composite Materials 45(21) (2011): 2217-2224. [25] Yu, C., Wang, C. F. & Chen, S. "Robust Self‐Healing Host–Guest Gels from Magnetocaloric Radical Polymerization." Advanced Functional Materials 24(9) (2014): 1235-1242. [26] Dean, L. M., Ravindra, A., Guo, A. X., Yourdkhani, M. & Sottos, N. R. "Photothermal Initiation of Frontal Polymerization Using Carbon Nanoparticles." ACS Applied Polymer Materials 2(11) (2020): 4690-4696. [27] Fortenbaugh, R. J. & Lear, B. J. "On-Demand Curing of Polydimethylsiloxane (PDMS) Using the Photothermal Effect of Gold Nanoparticles." Nanoscale 9(25) (2017): 8555-8559. [28] Odom, M. G., Sweeney, C. B., Parviz, D., Sill, L. P., Saed, M. A. & Green, M. J. "Rapid Curing and Additive Manufacturing of Thermoset Systems Using Scanning Microwave Heating of Carbon Nanotube/Epoxy Composites." Carbon 120 (2017): 447-453. [29] Xu, X., Zhang, Y., Jiang, J., Wang, H., Zhao, X., Li, Q. & Lu, W. "In-Situ Curing of Glass Fiber Reinforced Polymer Composites via Resistive Heating of Carbon Nanotube Films." Composites Science and Technology 149 (2017): 20-27. [30] Jiang, G., Turner, T. A. & Pickering, S. J. Pickering. "The Shear Viscosity of Carbon Fibre Suspension and Its Application for Fibre Length Measurement." Rheologica Acta 55(1) (2016): 1-10.

Conference: SAMPE 2023

Publication Date: 2023/04/17

SKU: TP23-0000000266

Pages: 8

Price: $16.00

Get This Paper