Title: NEW COMPOSITE STRUCTURES WITH INTEGRATED VACUUM INSULATION PANELS IN AIRCRAFT CABIN
Authors: Vakhtang Latsuzbaya, Peter Middendorf, Dietmar Voelkle, Christoph Weber
DOI: 10.33599/nasampe/s.23.0310
Abstract: Commercial aircrafts require insulation in order to protect passengers in the cabin from thermal and acoustic loads. The conventional insulation in aircrafts consists of blankets made from layers of glass wool wrapped in foil that keeps the glass wool from being adversely affected by the environment.
There is a potential to improve the thermal and acoustic properties of the cabin by replacing the interior panels with conventional secondary insulation by new panels combined with vacuum insulation panels (VIP).
This technical paper is focusing on the study of the VIP integration into the interior panels. Firstly, the new structure solutions were defined on the basis of a requirement analysis for interior panels and VIP and theoretical analysis. Secondly, the manufacturing feasibility study for the new solutions was performed. The results showed that the new structures can be manufactured. Thirdly, the thermal properties of the new structure solutions were measured. The test results demonstrated a decrease of thermal conductivity of the new panels by a factor of 3-6 compared to the conventional solutions. Finally, the impact of the hot molding press on the vacuum maintaining inside the VIP was investigated. The trials proved that the high barrier films can withstand high-temperature and pressure conditions and that the thermal conductivity of the test specimens didn’t worsen after one year.
References: 1. Wörner, M. Wärme- und Stofftransport in einer Flugzeugkabine unter besonderer Berücksichtigung des Feuchtetransportes. Cuvillier Verlag Göttingen (2006) 2. Vacuum Insulation Panel Association (VIPA). URL: https://vipa-international.org/features-of-vips/ (2021). Accessed 13 December 2021 3. Jelle, B.P., Kalnæs, S.E. Nanotech Based Vacuum Insulation Panels for Building Applications. Nano and Biotech Based Materials for Energy Building Efficiency, 167-214. Springer, Cham (2016) https://doi.org/10.1007/978-3-319-27505-5_7 4. Heinemann, U. Long-Term Performance of Super-Insulating Materials in Building Components and Systems. URL: http://vip-bau.de/pdf/literatur/IEA-EB_Annex-65_Report-subtask-I-SoA-2020-01-03-v0.pdf (2020). Accessed 14 March 2022 5. Diehl Aviation Laupheim: Synergetische Ansätze für neuartige Module, Monumente und Systeme von Flugzeugkabinen – SYLVIA. Abschlussbericht. Gefördert im Rahmen des V. Nationalen Luftfahrtforschungsprogramms (LuFo V) durch das Bundesministerium für Wirtschaft und Energie (BMWi), Laupheim (2018) 6. Federal Aviation Administration (FAA): Aircraft Thermal/Acoustic Insulation Materials - Functions and Requirements. URL: https://www.fire.tc.faa.gov/pdf/insulate.pdf (2021). Accessed 9 June 2020 7. Article: Rain in the Plain. Aircraft Cabin Management Magazine, 57-60 (2013) 8. Hause, T.J. Sandwich Structures: Theory and Responses. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71895-4 9. Thomsen, O.T., Bozhevolnaya, E., Lyckegaard, A. Sandwich Structures 7: Advancing with Sandwich Structures and Materials. Springer, Dordrecht (2005). https://doi.org/10.1007/1-4020-3848-8 10. va-Q-tec AG. URL: https://va-q-tec.com/. Accessed 14.01.2022 11. Beck, A., Binder, M. Wärme‐ und Feuchtetransport in Vakuumisolationspaneelen. Bauphysik, 30(6), 463-468 (2008) 12. Wang, X., Walliman, N., Ogden, R., Kendrick, C. VIP and their applications in buildings: a review. Construction Materials, Volume 160 Issue 4, 145-153 (2007). https://doi.org/10.1680/coma.2007.160.4.145 13. Singh, H., Geisler, M., Menzel, F. Experimental investigations into thermal transport phenomena in vacuum insulation panels (VIPs) using fumed silica cores. Energy and Buildings, Volume 107, 76-83 (2015). https://doi.org/10.1016/j.enbuild.2015.08.004 14. Liang, Y., Wu, H., Huang, G., Yang, J., Wang, H. Thermal performance and service life of vacuum insulation panels with aerogel composite cores. Energy and Buildings, Volume 154, 606-617 (2017). https://doi.org/10.1016/j.enbuild.2017.08.085 15. Carmi, Y. The Effect of Thermal Bridge in VIPs. https://hanita.averydennison.com/content/dam/averydennison/hanita/en/docs/home/customer-tools/technical-docs/td-the-effect-of-thermal-bridge-in-vips.pdf (2019). Accessed 14 January 2022 16. Gubbels, F., Dei Santi, D., Baily, V. Durability of vacuum insulation panels in the cavity of an insulating glass unit. Journal of Building Physics (2014). https://doi.org/10.1177/1744259114522118 17. Tao, W.H., Chang, C.C., Lin, J.Y. An Energy-Efficiency Performance Study of Vacuum Insulation Panels. Journal of Cellular Plastics (2000). https://doi.org/10.1106/MWC6-VQTG-4H4M-3CDQ 18. Kawaguchi, G., Nagai, K. Vacuum insulation spacer. US Patent No. 4409770 (1980) 19. Tokonabe, H., Umeda, K. Vacuum heat-insulating panel and method of manufacturing the same. European Patent Application No. EP1258343 (2002) 20. Müller, R., Mühlthaler, G. Flugzeugseitenverkleidung. German Patent Application No. DE102006028956A1 (2006) 21. Pfeifer, H. Vakuumdämmplatte aus evakuierten, voneinander wasserdampf- und gasdicht getrennten Kammern, und Verfahren zur Herstellung derselben. German Patent Application No. DE102005054805A1 (2005) 22. Peng, C., Yang, J. Structure, Mechanism, and Application of Vacuum Insulation Panels in Chinese Buildings. Advances in Building Technologies and Construction Materials (2016). https://doi.org/10.1155/2016/1358072 23. Baetens, R., Jelle, B. P., Thue, J. V., Tenpierik, M. J., Grynning, S., Uvsløkk, S., Gustavsen, A. Vacuum insulation panels for building applications: A review and beyond. Energy and Buildings Journal, Volume 42, Issue 2, 147-172 (2010). https://doi.org/10.1016/j.enbuild.2009.09.005 24. Schwab, H., Heinemann, U., Beck, A., Ebert, H.-P., Fricke, J. Dependence of Thermal Conductivity on Water Content in Vacuum Insulation Panels with Fumed Silica Kernels. Journal of Thermal Envelope and Building Science, Volume 28, Issue 4, 319-326 (2005). https://doi.org/10.1177/1097196305051792 25. Schwab, H., Stark, C., Wachtel, J., Ebert, H.P., Fricke, J. Thermal Bridges in Vacuum-insulated Building Façades. Journal of Thermal Envelope and Building Science, Volume 28 issue: 4, 345-355 (2005). https://doi.org/10.1177/1097196305051794 26. Karami, P., Al-Ayish, N., Gudmundsson, K. A comparative study of the environmental impact of Swedish residential buildings with vacuum insulation panels. Energy and Buildings, Volume 109, 183-194 (2015). https://doi.org/10.1016/j.enbuild.2015.10.031 27. Kwon, J.S., Jang, C.H., Jung, H., Song, T.H. Vacuum maintenance in vacuum insulation panels exemplified with a staggered beam VIP. Energy and Buildings, Volume 42, Issue 5, 590-597 (2010). https://doi.org/10.1016/j.enbuild.2009.10.029 28. Kwon, J.S., Jung, H., Yeo, I.S., Song, T.H. Outgassing characteristics of a polycarbonate core material for vacuum insulation panels. Vacuum, Volume 85, Issue 8, 839-846 (2011). https://doi.org/10.1016/j.vacuum.2010.12.009 29. Böckh, P., Wetzel, T. Wärmeübertragung. Springer-Verlag Berlin Heidelberg (2011). https://doi.org/10.1007/978-3-642-15959-6 30. Robertson, G.L. Food Packaging. Encyclopedia of Agriculture and Food Systems, 232-249 (2014). https://doi.org/10.1016/B978-0-444-52512-3.00063-2 31. Biron, M. 10 - Transition of Plastics to Renewable Feedstock and Raw Materials: Bioplastics and Additives Derived from Natural Resources. A Practical Guide to Plastics Sustainability, Concept, Solutions, and Implementation, Plastics Design Library, 469-555 (2020). https://doi.org/10.1016/B978-0-12-821539-5.00010-0 32. Fricke, J., Schwab, H., Heinemann, U. Vacuum Insulation Panels – Exciting Thermal Properties and Most Challenging Applications. Int J Thermophys 27, 1123–1139 (2006). https://doi.org/10.1007/s10765-006-0106-6 33. Hesselbach, F., Utikal, S. Herstellen eines Vakuum-Isolier-Paneels mit einem Wabenkern. German Patent Application No. DE102018006150A1 (2018)
Conference: SAMPE 2023
Publication Date: 2023/04/17
SKU: TP23-0000000310
Pages: 23
Price: $46.00
Get This Paper