Search

DIGITAL LIBRARY: SAMPE 2023 | SEATTLE, WA | APRIL 17-20

Get This Paper

REACTIVE POLYETHERIMIDE OLIGOMERS-MODIFIED EPOXY NETWORKS: EFFECT OF CURE CONDITIONS AND FORMULATIONS ON MORPHOLOGY, THERMAL & MECHANICAL PROPERTIES

Description

Title: REACTIVE POLYETHERIMIDE OLIGOMERS-MODIFIED EPOXY NETWORKS: EFFECT OF CURE CONDITIONS AND FORMULATIONS ON MORPHOLOGY, THERMAL & MECHANICAL PROPERTIES

Authors: Dadasaheb V. Patil, Devendra Bajaj, Prakash Sista, Nikhil Verghese

DOI: 10.33599/nasampe/s.23.0318

Abstract: Polyetherimides (PEIs) are amorphous, high performance engineering thermoplastic polymers. PEI resins offer a balance of properties such as thermal, mechanical, chemical resistance, dimensional stability, adhesion to metals and flame retardance. Hence, they are widely used in applications, such as automotive, aerospace, medical, electrical and electronics. PEIs have also been investigated as an additive to enhance the toughness performance of brittle thermoset resins. Research into the use of high molecular weight PEIs as toughening agents in thermoset resins has identified several challenges including, processability and complexities in generating the appropriate morphology in the cured thermoset network. New low molecular weight, reactive polyetherimide (rPEI) oligomers have been developed to address the above-mentioned challenges. This paper is intended to discuss the effects of cure conditions and formulations on the phase morphology, rheological, thermal, and mechanical properties of these rPEI oligomers-modified epoxy systems. Results demonstrate processability and performance advantages with the use of rPEI oligomers as a toughening agent in epoxy resins. The rPEI oligomers-modified epoxy resins exhibited a stable morphology while demonstrating enhancements in the flexural properties and toughness. Further, improvements in the heat of crosslinking reaction, and viscosity are observed while maintaining overall thermal properties. The advantages of rPEI oligomers in enhancing key structural and processing performance of epoxy systems suggest utility in a variety of demanding thermoset composites and adhesives applications.

References: 1. C. A. May. Epoxy Resin Chemistry and Technology, 2nd ed., New York: Marcel Dekker, 1988. 2. E. M. Petrie. Epoxy Adhesive Formulations, 1st ed., New York: McGraw-Hill, 2006. 3. J. Karger-Kocsis. Epoxy Polymers New Materials and Innovation, Macromol. Chem. Phys., 211 (16), 1836, 2010. [https://doi.org/10.1002/macp.201000278] 4. J. Lee, D Bhattacharyya, M. Zhang and Y. Yuan. “Mechanical Properties of a Self-healing Fiber Reinforced Epoxy Composites.” Composites Part B:Eng.,78 (2015):515-519. [https://doi.org/10.1016/j.compositesb.2015.04.014] 5. S-E. Lee, E. Jeong, M. Y Lee, M-K Lee and Y-S Lee. “Improvement of the Mechanical and Thermal Properties of Polyethersulfone-Modified Epoxy Composites.” J. Ind. Eng. Chem., 33 (2016): 73-79. [https://doi.org/10.1016/j.jiec.2015.09.022] 6. Y. Yu, Z. Zhang, W. Gan, M. Wang and S. Li. “Effect of Polyethersulfone on the Mechanical and Rheological Properties of Polyetherimide-Modified Epoxy Systems.” Ind. Eng. Chem. Res. 42(14) (2003): 3250-3256. [https://doi.org/10.1021/ie0210309] 7. J. Hodgkin, G. Simon and R. Varley. “Thermoplastic Toughening of Epoxy Resin: A Critical Review.” Polym. Adv. Technol., 9(1) (1998): 3-10. [https://doi.org/10.1002/(SICI)1099-1581(199801)9:1%3C3::AID-PAT727%3E3.0.CO;2-I] 8. G. Yang, B. Zheng, J. P. Yang, G. S. Xu and S. Y. Fu. “Preparation and Cryogenic Mechanical Properties of Epoxy Resins Modified by Poly(ethersulfone).” J. Polym. Sci., Part A: Polym. Chem., 46(2) (2008): 612-624. [https://doi.org/10.1002/pola.22409] 9. N. Zheng, Y. Huang, H-Y Liu, J. Gao and Y-W Mai. “Improvement in interlaminar fracture toughness in carbon fiber/epoxy composites with carbon nanotubes/polysulfone interleaves.” Compos. Sci. Technol. 2017, 140,8. [https://doi.org/10.1016/j.compscitech.2016.12.017] 10. W. B. Ying, H. S. Yang, D. S. Moon, M. W. Lee, N. Y. Ko, N. H. Kwak, B. Lee, J. Zhu and R. Y. Zhang. “Epoxy resins toughened with in situ azide–alkyne polymerized polysulfones.” J. Appl. Polym. Sci. 2017, 135, 45790. 11. C. B. Bucknall, and A. H. Gilbert. “Toughening Tetrafunctional Epoxy Resins Using Polyetherimide.” Polymer 30 (2) (1989): 213-217. [https://doi.org/10.1016/0032-3861(89)90107-9] 12. W. Chen, Z. Tao, L. Fan, S. Yang, W. Jiang, J. Wang, and Y. Xiong. “Effect of Poly(etherimide) Chemical Structures on the Properties of Epoxy/Poly(etherimide) Blends and Their Carbon Fiber-Reinforced Composites.” J. Appl. Polym. Sci. 119 (6) (2011): 3162-3169. [https://doi.org/10.1002/app.32916] 13. C. Su, and E. Woo. “Cure Kinetics and Morphology of Amine-Cured Tetraglycidyl-4,4′-Diamino Diphenylmethane Epoxy Blends with Poly(etherimide).” Polymer 36 (15) (1995): 2883-2894. [https://doi.org/10.1016/0032-3861(95)94337-S] 14. W. Gan, W. Xiong, Y. Yu, and S. Li. “Effects of the Molecular Weight of Poly(etherimide) on the Viscoelastic Phase Separation of Poly(etherimide)/Epoxy Blends.” J. Appl. Polym. Sci. 114 (5) (2005): 3158-3167. [https://doi.org/10.1002/app.30897] 15. W. Lee, and J. Jang. “Polyetherimide-Modified High Performance Epoxy Resin.” Polymer Journal 26 (1994): 513-525. [https://doi.org/10.1295/polymj.26.513] 16. J. Cho, J. Hwang, K. Cho, J. An, and C. Park. “Effects of Morphology on Toughening of Tetrafunctional Epoxy Resins with Poly (ether imide).” Polymer 34 (23) (1993): 4832-4836. [https://doi.org/10.1016/0032-3861(93)90005-U] 17. W. Gan, Y. Yu, X. Liu, M. Wang, and S. Li. “Kinetics of Phase Separation at the Early Stage of Spinodal Decomposition in Epoxy Resin Modified with PEI Blends.” Colloid Polym. Sci., 287 (2009): 23-28. [https://doi.org/10.1007/s00396-008-1944-5] 18. W. Gan, Y. Yu, M. Wang, Q. Tao, and S. Li. “Morphology Evolution During the Phase Separation of Polyetherimide/Epoxy Blends.” Macromol. Rapid Commun., 24 (16) (2003): 952-956. [https://doi.org/10.1002/marc.200300017] 19. E. Girard-Reydet, H. Sautereau, J.P Pascault, P. Keates, P. Navard, G. Thollet, G. Vigier. “Reaction-Induced Phase Separation Mechanisms in Modified Thermosets.” Polymer 39 (11) (1998): 2269-2279. [https://doi.org/10.1016/S0032-3861(97)00425-4] 20. J. Parameswaranpillai, N. Hameed, J. Pionteck and E.M. Woo, Handbook of Epoxy Blends, 1st ed., Cham: Springer International Publishing, 2017. [https://doi.org/10.1007/978-3-319-40043-3] 21. R. R. Gallucci. “Thermoplastic Polyetherimide (PEI).” Engineering Plastics Handbook. 1st ed., New York: McGraw-Hill Professional, 2005. 22. Troughton, M.J. “Chapter 29- Polyetherimide.” Handbook of Plastic Joining. 2nd ed., New York: William Andrew Applied Science Publishers, 245, 2009. 23. S. Y. Lau Kreisler. Chapter 10- High-Performance Polyimides and High Temperature Resistant Polymers in Handbook of Thermoset Plastics, 3rd ed., New York: William Andrew Applied Science Publishers, 245, 2009. [https://doi.org/10.1016/C2011-0-09694-1] 24. D. V. Patil, N. Verghese. “Reactive Polyetherimide Oligomers: Part 1. Processability Enhancements in Epoxy Resins.” CAMX 2022 Conference, TP22-0000000039. 25. D. Bajaj, H. Chen, D. Patil, N. Verghese and H-J Sue. “Reactive Polyetherimide Oligomers: Part II. Toughening in Epoxy Resins.” CAMX 2022 Conference, TP22-0000000049. 26. H. Chen, D. Patil, D. Bajaj, N. Verghese, and H-J. Sue. “Reactive Telechelic Polyetherimide Toughened Tetrafunctional Epoxy.” 15th International Conference on Fracture (ICF15), 2023. 27. H. Chen, Z. Zhu, D. Patil, D. Bajaj, N. Verghese, Z. Jiang, and H-J. Sue. “Mechanical Properties of Reactive Polyetherimide-Modified Epoxy Systems.” Polymer, under review. 28. D. Bajaj and D. Kay. Drop weight tower for crack initiation in fracture mechanics samples. US Patent 10,107,730

Conference: SAMPE 2023

Publication Date: 2023/04/17

SKU: TP23-0000000318

Pages: 13

Price: $26.00

Get This Paper