Get This Paper




Authors: Simon T. Kaysser1, Christian A. Keun, Maximilian Ritschel, Sebastian Steffen, Jens Kürsten, Benedikt Schug, Florian Gortner

DOI: 10.33599/nasampe/s.23.0325

Abstract: Sheet Moulding Compounds (SMC) offer high mechanical performance and lightweight potential paired with short processing times. Therefore, SMC are used for applications in large scale serial production in aviation and automotive. Aircraft interior applications require flame retardant properties. Flame retardant SMC materials for aircraft interior applications are state of the art. They offer good performance, but lack surface quality, freedom in color and are opaque due to the high content of mineral fillers and flame retardants. Therefore, the use of SMC in visible components is limited by design challenges and requires surface finishing and coating, which enhances costs and carbon footprint.
In project “TRANA”, founded by the German Ministry for Economic Affairs and Climate Action, CompriseTec, Fraunhofer IAP and ISC, Leibniz-Institut für Verbundwerkstoffe and Schmidt & Heinzmann are developing an innovative SMC system, which is flame retardant and offers a good surface quality but is also translucent. This is achieved via nanoscaled flame retardants, which are specifically modified for the SMC system. The project also includes the development of an SMC production line, which enables the robust processing of very high viscous resin paste systems and their processing in sealing edge molds. For visible parts, high surface qualities and colorization are possible. Translucent flame retardant SMC offers a vast amount of new applications, e.g. for passenger information or lighting applications.

References: [1] Polynt Composites GmbH, Technical Data Sheet "HUP 63/25 RB-9010", 2017. [2], 01.06.2022. [3] N.N. Leont’eva, , S.V. Cherepanova, V.A. Drozdov, Thermal decomposition of layered double hydroxides Mg-Al, Ni-Al, Mg-Ga: Structural features of hydroxide, dehydrated, and oxide phases. J Struct Chem 2014, 55, 1326–1341. DOI: 10.1134/S0022476614070142. [4] F. M. Labajos, M. D. Sastre, R. Trujillano, V. Rives, New layered double hydroxides with the hydrotalcite structure containing Ni(II) and V(III), J. Mater. Chem. 1999, 9, 1033. DOI: 10.1039/A808544G. [5] Z. Gu, J. J. Atherton, Z. P. Xu, Hierarchical layered double hydroxide nanocomposites: structure, synthesis and applications, Chemical communications (Cambridge, England) 2015, 51, 3024. DOI: 10.1039/C4CC07715F. [6] A. I. Khan, L. Lei, A. J. Norquist, D. O`Hare, Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide Electronic supplementary information (ESI), Chem. Commun. 2001, 22, 2342. [7] A. Flegler, M. Schneider, J. Prieschl, R. Stevens, T. Vinnay, K. Mandel, Continuous flow synthesis and cleaning of nano layered double hydroxides and the potential of the route to adjust round or platelet nanoparticle morphology, RSC Adv 2016, 6, 57236-57244. DOI: 10.1039/C6RA09553D. [8] Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, Synthesis, Anion Exchange, and Delamination of Co−Al Layered Double Hydroxide:  Assembly of the Exfoliated Nanosheet/Polyanion Composite Films and Magneto-Optical Studies, Journal of the American Chemical Society 2006, 128 (14), 4872-4880. DOI: 10.1021/ja0584471. [9] Q. Chang, L. Zhu, Z. Luo, M. Lei, S. Zhang, H. Tang, Sono-assisted preparation of magnetic magnesium–aluminum layered double hydroxides and their application for removing fluoride, Ultrasonics sonochemistry 2011, 18, 2, 553-561. DOI: 10.1016/j.ultsonch.2010.10.001. [10] A. Flegler, S. Müssig, J. Prieschl, K. Mandel, G. Sextl, Towards core-shell bifunctional catalyst particles for aqueous metal-air batteries: NiFe-layered double hydroxide nanoparticle coatings on γ-MnO2 microparticles, Electrochimica Acta 2017, 231, 216-222. DOI: 10.1016/j.electacta.2017.01.179. [11] A. Sommella, A. G. Caporale, M. A. Denecke, S. Mangold, M. Pigna, A. Santoro, R. Terzano, A. Violante, Nature and reactivity of layered double hydroxides formed by coprecipitating Mg, Al and As(V): Effect of arsenic concentration, pH, and aging, Journal of hazardous materials 2015, 300, 504-512. DOI: 10.1016/j.jhazmat.2015.07.046. [12] L. Du, B. Qu, Structural characterization and thermal oxidation properties of LLDPE/MgAl-LDH nanocomposites, J. Mater. Chem. 2006, 16, 1549. DOI: 10.1039/B514319E. [13] X. Wang, E. N. Kalali, D.-Y. Wang, Two-Dimensional Inorganic Nanomaterials: A Solution to Flame Retardant Polymers, Nano Adv 2016, 1, 1-16. [14] F. Millange, R. I. Walton, D. O'Hare, Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg–Al–carbonate hydrotalcite-like compounds, J. Mater. Chem. 2000, 10, 1713-1720. DOI: 10.1039/B002827O. [15] Y. Kim, W. Yang, P. K. T. Liu, M. Sahimi, T. T. Tsotsis, Thermal Evolution of the Structure of a Mg−Al−CO3 Layered Double Hydroxide:  Sorption Reversibility Aspects, Ind. Eng. Chem. Res. 2004, 43, 16, 4559-4570. DOI: 10.1021/ie0308036. [16] Z. Matusinovic, C. A. Wilkie, Fire retardancy and morphology of layered double hydroxide nanocomposites: a review, J. Mater. Chem. 2012, 22, 18701-18704. DOI: 10.1039/C2JM33179A. [17] F. R. Costa, U. Wagenknecht, G. Heinrich, LDPE/Mg–Al layered double hydroxide nanocomposite: Thermal and flammability properties, Polymer Degradation and Stability 2007, 92, 10, 1813-1823. DOI: 10.1016/j.polymdegradstab.2007.07.009. [18] Y. Gao, J. Wu, Q. Wang, C. A. Wilkie, D. O'Hare, Flame retardant polymer/layered double hydroxide nanocomposites, J. Mater. Chem. A 2014, 2, 10996-11016. DOI: 10.1039/C4TA01030B. [19] B. Dittrich, K.-A. Wartig, D. Hofmann, R. Mülhaupt, B. Schartel, The influence of layered, spherical, and tubular carbon nanomaterials' concentration on the flame retardancy of polypropylene, Polym. Compos. 2015, 36, 7, 1230-1241. DOI: 10.1002/pc.23027. [20], 05.01.2024.

Conference: SAMPE 2023

Publication Date: 2023/04/17

SKU: TP23-0000000325

Pages: 14

Price: $28.00

Get This Paper