Search

DIGITAL LIBRARY: SAMPE 2024 | LONG BEACH, CA | MAY 20-23

Get This Paper

Design and Testing of a Multi-Material Joint for Cryogenic Hydrogen Flow

Description

Title: Design and Testing of a Multi-Material Joint for Cryogenic Hydrogen Flow

Authors: André Baeten, Sabrina Barm, Markus Fackler, Neven Majic, Johannes Reitenberger, Samuel Griza, Christian Oblinger, Kiran Kamath, Timo Körner, Anna Trauth

DOI: 10.33599/nasampe/s.24.0015

Abstract: Manufacturing of ceramic matrix composites (CMCs) with carbon fiber and carbon matrix includes a time- and labor-intensive ceramic infiltration step that is responsible for more than half of the total manufacturing cost. To make CMCs cost-competitive in price-sensitive markets, like concentrated solar power, it is essential to develop a CMC manufacturing process that skips the ceramic infiltration process. In this work, we will show how a high-char-yield preceramic resin can eliminate the infiltration step while maintaining material density and evaluate the technoeconomic impact of our CMC manufacturing process. We monitor both morphology and porosity to determine the quality of CMCs made with different preceramic resins and evaluate the impact of polymer infiltration and pyrolyzing cycles.

References: 7.REFERENCES AlZohbi, G., Almoaikel, A., &AlShuhail, L. (2023). An overview on the technologies used to store hydrogen. https://doi.org/10.1016/j.egyr.2023.08.072 Bloomfield, R. (Ed.) (2001). Temperature measurement errors in automotive lighting. Buttner, W., Rivkin, C., Burgess, R., Hartmann, K., Bloomfield, I., Bubar, M., . . . Moretto, P. (2017). Hydrogen monitoring requirements in the global technical regulation on hydrogen and fuel cell vehicles (No. 11). https://doi.org/10.1016/j.ijhydene.2016.06.053 Forsberg, K., &Mooz, H. (1998). 7.17. System Engineering for Faster, Cheaper, Better. INCOSE International Symposium, 8(1), 917–927. https://doi.org/10.1002/j.2334-5837.1998.tb00130.x Gajbhiye, B. D., Kulkarni, H. A., Tiwari, S. S., &Mathpati, C. S. (2020). Teaching turbulent flow through pipe fittings using computational fluid dynamics approach. Engineering Reports, 2(1). https://doi.org/10.1002/eng2.12093 Galembeck, F., Burgo, T. A. L., Balestrin, L. B. S., Gouveia, R. F., Silva, C. A., &Galembeck, A. (2014). Friction, tribochemistry and triboelectricity: recent progress and perspectives. RSC Adv, 4(109), 64280–64298. https://doi.org/10.1039/C4RA09604E Gorman, J. K., &Nardella, W. R. (1962). Hydrogen permeation through metals. Vacuum, 12(1), 19–24. https://doi.org/10.1016/0042-207X(62)90821-7 H.-M. Prasser, D. Scholz, C. Zippe (2001). Bubble size measurement using wire-mesh sensors. He Fei, Y. J. (2011). System synthesis design method in system engineering process. Journal of Beijing University of Aeronautics and Astronautics, 2011. Huang, X., Haneef, S. M., Davies, M., Moseley, D. A., Ludbrook, B. M., Salazar, E. E., . . . Badcock, R. A. (2023). Optimization of surface bonding methods for fiber Bragg grating sensors at cryogenic temperatures. https://doi.org/10.1016/j.yofte.2023.103419 Hummel, R. E. (2001). Electrical Properties of Polymers, Ceramics, Dielectrics, and Amorphous Materials. Springer. IEA - International Energy Agency (2023). Global Hydrogen Review 2023. INCOSE (2015). Systems engineering handbook. Engineering, International Council on Systems A guide for system life cycle processes and activities : INCOSE-TP-2003-002-04 2015. (4e édition). Hoboken (N. J.): Wiley. Kickhofel, J., Yang, J., &Prasser, H.‑M. (2018). Designing a high temperature high pressure mesh sensor. https://doi.org/10.1016/j.nucengdes.2017.07.020 Louthan, M. R., &Caskey, G. R. (1976). Hydrogen transport and embrittlement in structural metals. International Journal of Hydrogen Energy, 1(3), 291–305. https://doi.org/10.1016/0360-3199(76)90024-0 M. J Peet., H.S. Hasan, &H.K.D.H. Bhadeshia (2011). Prediction of thermal conductivity of steel. Matsuo, T., Yamabe, J., &Matsuoka, S. (2014). Effects of hydrogen on tensile properties and fracture surface morphologies of Type 316L stainless steel (No. 7). https://doi.org/10.1016/j.ijhydene.2013.12.099 Nosrati, K., Tahershamsi, A., &Seyed Taheri, S. H. (2017). Numerical Analysis of Energy Loss Coefficient in Pipe Contraction Using ANSYS CFX Software. Civil Engineering Journal, 3(4), 288–300. https://doi.org/10.28991/cej-2017-00000091 Onodu, C. S., &Madueme, T. C. (2020). Manufacture of porcelain insulators from locally available materials. Electrical Engineering, 102(4), 1959–1968. https://doi.org/10.1007/s00202-020-00998-5 Peer, M., Brunec, I. K., Newcombe, N. S., &Epstein, R. A. (2021). Structuring Knowledge with Cognitive Maps and Cognitive Graphs. Trends in Cognitive Sciences, 25(1), 37–54. https://doi.org/10.1016/j.tics.2020.10.004 S. A. Stern* and J. R. Friedy (2007). Permeability of Polymers to Gases and Vapors: Physical properties of polymers handbook. Sharma, V. B., Singh, K., Gupta, R., Joshi, A., Dubey, R., Gupta, V., . . . Biswas, S. (2021). Review of Structural Health Monitoring Techniques in Pipeline and Wind Turbine Industries (No. 3). https://doi.org/10.3390/asi4030059 Shi, J., Gong, C., Tian, X., Yang, S., &Chu, P. K. (2012). Optical properties and chemical structures of Kapton-H film after proton irradiation by immersion in a hydrogen plasma (No. 8). https://doi.org/10.1016/j.apsusc.2011.12.037 Surepure Chemetals (2024a, February 20). Buy Copper Wire and Rod, Diameter: 0.125 in. / 3.175 mm / 8 gauge, Copper Subcategory: 99.99% Pure OFHC Copper Wire - C101 - Oxygen-Free-Electronic. Retrieved from https://www.surepure.com/Copper-Wire-Rod-0.125-in.-3.175-mm-8-gauge-99.99Percent-Pure-OFHC-Copper-Wire---C101---Oxygen-Free-Electronic/a/14,1,208,890 Surepure Chemetals (2024b, February 20). Buy Silver Wire and Rod, Diameter: 0.125 in. / 3.175 mm / 8 gauge. Retrieved from https://www.surepure.com/Silver-Wire-Rod-0.125-in.-3.175-mm-8-gauge/a/10,1,208 Touzin, M., Goeuriot, D., Guerret-Piécourt, C., Juvé, D., &Fitting, H.‑J. (2010). Alumina based ceramics for high-voltage insulation. Journal of the European Ceramic Society, 30(4), 805–817. https://doi.org/10.1016/j.jeurceramsoc.2009.09.025 Young, H. D., &Sears, F. W. (1992). University physics (8th ed.). Addison-Wesley series in physics. Reading, Mass.: Addison-Wesley Pub. Co.

Conference: SAMPE 2024

Publication Date: 2024/05/20

SKU: TP24-0000000015

Pages: 22

Price: $44.00

Get This Paper