Title: Holistic Digital Product Development Process for Tailored Fibre Placement Reinforced Parts
Authors: Lars Wollert, Rebecca Emmerich, Tobias Schalm, Diego Aguirre, Julia Lenz, Thomas Gries
DOI: 10.33599/nasampe/s.24.0062
Abstract: "Due to the complexity of production, fibre-reinforced plastic components are often manufactured in small or medium series in time-consuming manual processes. When using load-optimised production technologies, the tailored fibre placement (TFP) process is well established. But, the product development process is time consuming. Here, the missing connection between different development steps (e.g. load case optimisation, FEM analysis, draping and path planning) often leads to multiple iterations. For this purpose, a digital tool with links to common engineering software as well as financial and economic evaluation tools is indispensable. Using TFP as semi-finished textile production method is a promising process for an efficient production of load-optimised components. Currently, only a few manufacturers have the know-how to develop products while directly considering the entire process chain. Within the framework of the research project DigiPEP, a digitalisation of the entire product development process for TFP reinforced composite parts is being developed. Starting from a defined component geometry, the aim is first to simplify the development process through automated design processes and the implementation of the path planning of the embroidery pattern. In addition to the design of the optimal paths and component thickness, a draping model is part of the digital process chain. Especially for the mechanical design, a broad database for TFP preforms is required. For this purpose, critical shear angles for TFP semi-finished textiles with different manufacturing parameters are determined. For this, shear frame tests and an optical measurement method are used. These parameters can be used in the following for the implementation of the drape model and the transformation from 2D to 3D data."
References: [1]JEC Composites, ""JEC Composites Magazine - JEC Observer 2023,"" Mar. 2023. Accessed: Jan. 19 2024. [Online]. Available: https://digital-magazine.jeccomposites.com/reader/226be756-8dc4-4463-ac1a-0d8c1ddfc642?origin=%2Fspecial-issues%2Fspecial-issues%2Fn6-2023 [2]D. Feltin, ""Entwicklung von textilen Halbzeugen für Faserverbunde unter Verwendung von Stickautomaten,"" Dissertation, Fakultät Maschinenwesen, Technische Universität Dresden, 1998. [3]P. Mattheij, K. Gliesche, and D. Feltin, ""Tailored Fiber Placement - Mechanical Properties and Applications,"" Journal of Reinforced Plastics and Composites, vol. 17, no. 9, pp. 774–786, 1998. [4]A. Spickenheuer, Zur fertigungsgerechten Auslegung von Faser-Kunststoff-Verbundbauteilen für den extremen Leichtbau auf Basis des variabelaxialen Fadenablageverfahrens Tailored Fiber Placement, 2014. [Online]. Available: https://tud.qucosa.de/landing-page/https%3A%2F%2Ftud.qucosa.de%2Fapi%2Fqucosa%253A28180%2Fmets%2F/ [5]A. A. Khodunov, V. V. Bogachev, and A. S. Borodulin, ""Advances in tailored fiber placement technology,"" J. Phys.: Conf. Ser., vol. 1990, no. 1, p. 12041, 2021, doi: 10.1088/1742-6596/1990/1/012041. [6]J. Fial, S. Carosella, M. Langheinz, P. Wiest, and P. Middendorf, ""A novel textile characterisation approach using an embedded sensor system and segmented textile manipulation,"" in Palermo, Italy, 2018, p. 20007. [7]Y. Schlesinger, ""Bewertung der Wirtschaftlichkeit von TFP-Bauteilen für Leichtbauanwendungen,"" Institut für Textiltechnik Aachen, RWTH Aachen University, Aachen, 2018. [8]T. Sippach, H. Dahy, K. Uhlig, B. Grisin, S. Carosella, and P. Middendorf, ""Structural Optimization through Biomimetic-Inspired Material-Specific Application of Plant-Based Natural Fiber-Reinforced Polymer Composites (NFRP) for Future Sustainable Lightweight Architecture,"" Polymers, vol. 12, no. 12, pp. 1–16, 2020, doi: 10.3390/polym12123048. [9]M. F. Schwab, ""Systematische Technologiekettengestaltung für endkonturnahe Strukturbauteile mittels Tailored Fibre Placement,"" Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen; Shaker Verlag, 2021. [10]Filacon Systems GmbH et al., Herausforderungen bei der Entwicklung von Produkten mit TFP-Halbzeugen. Aachen. Accessed: 01/2024. [11]Filacon Systems GmbH, Tailored Fiber Placement (TFP) – FILACON Systems. [Online]. Available: https://www.filacon.com/fiber (accessed: Jan. 19 2024). [12]ZSK STICKMASCHINEN GmbH, EPC Win – Softwarelösungen für ZSK Stickmaschinen. [Online]. Available: https://www.zsk.de/de/software/epc-win.php (accessed: Jan. 19 2024). [13]P. Ermanni, Composites Technologien - PDF Kostenfreier Download: Vorlesungsskript. Zürich, 2007. Accessed: Jan. 17 2024. [Online]. Available: https://docplayer.org/7227257-Composites-technologien.html [14]B. Manin, Geometriebasierte Methode zur Vorhersage der Scherwinkelverteilung in Verstärkungstextilien aus Endlosfasern nach dem Drapierprozess, 1st ed.: Shaker Verlag GmbH, 2023. [15]R. Emmerich et al., Von der Idee zum Bauteil : digitaler Produktionsentstehungsprozess zur Auslegung von Tailored-Fibre-Placement-Bauteilen (From the idea to the component : digital product development process for the design of tailored fibre placement components). [Online]. Available: https://www.unserebroschuere.de/AVK_Composites_Report_06_DT.pdf (accessed: Jan. 17 2024). [16]A. Singh Gill, D. Visotsky, L. Mears, and J. D. Summers, ""Cost Estimation Model for Polyacrylonitrile-Based Carbon Fiber Manufacturing Process,"" J. Manuf. Sci. Eng, vol. 139, no. 4, 2017, doi: 10.1115/1.4034713. [17]S. Orawattanasrikul, ""Experimentelle Analyse der Scherdeformation biaxial verstärkter Mehrlagengestricke,"" Dissertation, Fakultät Maschinenwesen, Technische Universität Dresden, Dresden, 2006.
Conference: SAMPE 2024
Publication Date: 2024/05/20
SKU: TP24-0000000062
Pages: 15
Price: $30.00
Get This Paper