Title: Cellulose Nanofibrils Hydrophobized by a One-Pot Aqueous Process for Composite Reinforcement
Authors: Kevin Oesef, Keith Gourlay, Gurminder Minhas, Emily D. Cranston, Yasmine Abdin1
DOI: 10.33599/nasampe/s.24.0091
Abstract: Cellulose nanofibrils (CNF) are an abundant, lightweight biopolymer with impressive mechanical properties, and is a promising substitute for heavy and energy-intensive glass fibers. However, the inherent hydrophilicity of CNF is incompatible with hydrophobic polymer resins such as epoxies, causing CNF aggregation and fiber-rich zones. We demonstrate a simple, one-pot, water-based hydrophobization route for CNFs using a tannic acid pre-coat followed by an aliphatic amine graft, which improved water contact angles to 60 degrees and increased the nanofibrillation in dried CNF films. The use of shorter aliphatic amines maintains hydrophobicity and allows purification without solvents. Using a combination of long-life hardener, mold heating (ca. 55 °C), and moderate rotor-stator homogenization, modified CNFs were dispersed in epoxy, achieving a smooth surface finish, low void fraction, and homogeneous fiber distribution. The as-received fiber morphology was preserved, and CNF distribution was verified using X-ray tomography. Our research demonstrates that CNF-reinforced composites can be produced using commercially available CNFs and realize a fully water-based process that can be scaled up industrially.
References: [1] Bubna, P. and Wiseman, M. In Impact of Light-Weight Design on Manufacturing Cost - A Review of BMW i3 and Toyota Corolla Body Components, Proceedings of the SAE 2016 World Congress and Exhibition, 2016. [2] Isenstadt, A., German, J., Bubna, P., Wiseman, M., Venkatakrishnan, U., Abbasov, L., Guillen, P., Moroz, N., Richman, D., and Kolwich, G. In Lightweighting technology development and trends in U.S. passenger vehicles, Proceedings of the SAE 2015 World Congress & Exhibition, 2016. [3] Lewis, G. M. , Buchanan, C. A. , Jhaveri, K. D. , Sullivan, J. L. , Kelly, J. C. , Das, S. , Taub, A. I. , and Keoleian, G. A. Green Principles for Vehicle Lightweighting. Environmental Science & Technology 2019, 53, 4063–4077. [4] Neves, R. M. , Ornaghi, H. L. , Zattera, A. J. , and Amico, S. C. Recent studies on modified cellulose/nanocellulose epoxy composites: A systematic review. Carbohydrate Polymers 2021, 255, 117366. [5] Masoodi, R. , El-Hajjar, R. F. , Pillai, K. M. , and Sabo, R. Mechanical characterization of cellulose nanofiber and bio-based epoxy composite. Materials & Design (1980-2015) 2012, 36, 570–576. [6] George, J. and Sabapathi, S. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnology, Science and Applications 2015, 8, 45–54. [7] Nissilä, T. , Hietala, M. , and Oksman, K. A method for preparing epoxy-cellulose nanofiber composites with an oriented structure. Composites Part A: Applied Science and Manufacturing 2019, 125, 105515. [8] Wohlert, M. , Benselfelt, T. , Wågberg, L. , Furó, I. , Berglund, L. A. , and Wohlert, J. Cellulose and the role of hydrogen bonds: not in charge of everything. Cellulose 2022, 29, 1–23. [9] Fairman, E. Avoiding Aggregation During Drying and Rehydration of Nanocellulose, 2014. [10] Sinquefield, S. , Ciesielski, P. N. , Li, K. , Gardner, D. J. , and Ozcan, S. Nanocellulose Dewatering and Drying: Current State and Future Perspectives. ACS Sustainable Chemistry & Engineering 2020, 8, 9601–9615. [11] Kargarzadeh, H. , Mariano, M. , Huang, J. , Lin, N. , Ahmad, I. , Dufresne, A. , and Thomas, S. Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer 2017, 132, 368–393. [12] Igarashi, Y. , Sato, A. , Okumura, H. , Nakatsubo, F. , and Yano, H. Manufacturing process centered on dry-pulp direct kneading method opens a door for commercialization of cellulose nanofiber reinforced composites. Chemical Engineering Journal 2018, 354, 563–568. [13] Jonoobi, M. , Harun, J. , Mathew, A. P. , Hussein, M. Z. B. , and Oksman, K. Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 2010, 17, 299–307. [14] Xhanari, K. , Syverud, K. , Chinga-Carrasco, G. , Paso, K. , and Stenius, P. Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants. Cellulose 2011, 18, 257–270. [15] Syverud, K. , Xhanari, K. , Chinga-Carrasco, G. , Yu, Y. , and Stenius, P. Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. Journal of Nanoparticle Research 2011, 13, 773–782. [16] Missoum, K. , Bras, J. , and Belgacem, M. N. Organization of aliphatic chains grafted on nanofibrillated cellulose and influence on final properties. Cellulose 2012, 19, 1957–1973. [17] Hu, Z. , Berry, R. M. , Pelton, R. , and Cranston, E. D. One-Pot Water-Based Hydrophobic Surface Modification of Cellulose Nanocrystals Using Plant Polyphenols. ACS Sustainable Chemistry & Engineering 2017, 5, 5018–5026. [18] Oesef, K. Water-Based Hydrophobization of Cellulose Nanofibrils for Incorporation in Epoxy Composites. (2023). [19] Silva, J. M. de S. e , Zanette, I. , Noël, P. B. , Cardoso, M. B. , Kimm, M. A. , and Pfeiffer, F. Three-dimensional non-destructive soft-tissue visualization with X-ray staining micro-tomography. Scientific Reports 2015, 5, 14088. [20] Herschlag, D. and Pinney, M. M. Hydrogen Bonds: Simple after All? Biochemistry 2018, 57, 3338–3352. [21] Eggl, M. F. and Schmid, P. J. Mixing by stirring: Optimizing shapes and strategies. Physical Review Fluids 2022, 7, 073904. [22] Spencer, R. S. and Wiley, R. M. The mixing of very viscous liquids. Journal of Colloid Science 1951, 6, 133–145. [23] Osorio, D. A. , Lee, B. E. J. , Kwiecien, J. M. , Wang, X. , Shahid, I. , Hurley, A. L. , Cranston, E. D. , and Grandfield, K. Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds. Acta Biomaterialia 2019, 87, 152–165. [24] Krugly, E. , Pauliukaityte, I. , Ciuzas, D. , Bulota, M. , Peciulyte, L. , and Martuzevicius, D. Cellulose electrospinning from ionic liquids: The effects of ionic liquid removal on the fiber morphology. Carbohydrate Polymers 2022, 285, 119260. [25] Uribe, B. E. B. , Soares-Pozzi, A. C. , and Tarpani, J. R. Nanocellulose-coated carbon fibers towards developing hierarchical polymer matrix composites. Materials Today: Proceedings 2019, 8, 820–831. [26] Zhu, X. , Li, Y. , Yu, T. , and Zhang, Z. Enhancement of the interlaminar fracture toughness and damping properties of carbon fiber reinforced composites using cellulose nanofiber interleaves. Composites Communications 2021, 28, 100940. [27] Azhary, T. , Kusmono, Wildan, M. W. , and Herianto Mechanical, morphological, and thermal characteristics of epoxy/glass fiber/cellulose nanofiber hybrid composites. Polymer Testing 2022, 110, 107560. [28] Bang, J. , Lee, H. , Yang, Y. , Oh, J.-K. , and Kwak, H. W. Nano/Micro Hybrid Bamboo Fibrous Preforms for Robust Biodegradable Fiber Reinforced Plastics. Polymers 2021, 13, 636. [29] Goyo-Brito, F. J. , Pereira-da-Silva, M. A. , and Tarpani, J. R. Enhancing the flexural properties of CFRP with vacuum-assisted deposition of cellulose microfibrils to create a multiscale reinforcement network. Composite Interfaces 2023, 0, 1–22.
Conference: SAMPE 2024
Publication Date: 2024/05/20
SKU: TP24-0000000091
Pages: 16
Price: $32.00
Get This Paper