Title: Chemical Vapor Deposition/Infiltration of Hafnium Diboride on Carbon Fiber with a Pyrolytic Carbon Interfacial Coating
Authors: Seth Shuster , Joseph Valus , Nathaniel Nisly , Kaveendra Yasas Wickramathilaka , Ryan Purgay , Fayaz Arif , Scott Bamonte Seth March , Kenneth Petroski , Akshay Waghray , Steven Suib L.
DOI: 10.33599/nasampe/s.24.0128
Abstract: Hafnium diboride is an ultra-high temperature ceramic with impressive thermal, mechanical, and electrical properties. It finds use in many high temperature aerospace applications. [1] Current methodologies for its synthesis utilize sintering techniques which require high temperatures, and can damage additional composite components. [2-3] Chemical vapor deposition/infiltration utilizes lower temperatures and offers wide degree of control of coatings by altering variables such as temperature, pressure, and gas flow ratios. [4-5] In this paper hafnium diboride was deposited on T-300 carbon fiber tows with pyrolytic carbon interfacial coatings, utilizing precursors consisting of HfCl4, H2, BCl3, and Ar. In this study all trials exhibited strong deposition rates which were as high as 35.4 μm/ hour, and impressive infiltration capabilities. Variables such as pressure and excess H2 amounts were changed, where temperature was kept consistent at 1250 °C. It was found that pressure affected deposition and morphologies rates and infiltration capabilities less than the ratios of excess H2.
References: 1.Al-Jothery HKM, Albarody TMB, Yusoff PSM, Abdullah MA, Hussein AR. A review of ultra-high temperature materials for thermal protection system. IOP Conf Ser: Mater Sci Eng. 2020 May 1;863(1):012003. DOI: 10.1088/1757-899X/863/1/012003 2.Wang H, Lee SH, Feng L. HfB2–SiC composite prepared by reactive spark plasma sintering. Ceramics International. 2014 Aug;40(7):11009–13. https://doi.org/10.1016/j.ceramint.2014.03.107 3.Monteverde F, Melandri C, Guicciardi S. Microstructure and mechanical properties of an HfB2+30vol.% SiC composite consolidated by spark plasma sintering. Materials Chemistry and Physics. 2006 Dec;100(2–3):513–9. https://doi.org/10.1016/j.matchemphys.2006.02.003 4.Hill CL, Reutenauer JW, Arpin KA, Suib SL, Kmetz MA. Interfacial Processing Via CVD for Nicalon Based Ceramic Matrix Composites. In: Zhu D, Schulz U, Wereszczak A, Lara-Curzio E, editors. Ceramic Engineering and Science Proceedings [Internet]. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2006 [cited 2023 Jun 30]. p. 253–64. https://onlinelibrary.wiley.com/doi/10.1002/9780470291320.ch24 5.Hersee SD, Duchemin JP. Low-Pressure Chemical Vapor Deposition. Ann Rev Mater Sci. 1982; 12: 65–80. 6.Gasch M, Johnson S, Marschall J. Thermal Conductivity Characterization of Hafnium Diboride-Based Ultra-High-Temperature Ceramics. J American Ceramic Society. 2008 May;91(5):1423–32. https://doi.org/10.1111/j.1551-2916.2008.02364.x 7.Lynam A, Romero AR, Xu F, Wellman RW, Hussain T. Thermal Spraying of Ultra-High Temperature Ceramics: A Review on Processing Routes and Performance. J Therm Spray Tech. 2022 Apr;31(4):745–79. https://doi.org/10.1007/s11666-022-01381-5 8.Li K, Liu G, Zhang Y. Ablation properties of HfB2 coatings prepared by supersonic atmospheric plasma spraying for SiC-coated carbon/carbon composites. Surface and Coatings Technology. 2019 Jan;357: 48–56. https://doi.org/10.1016/j.surfcoat.2018.09.060 9.Paul A, Rubio V, Binner J, Vaidhyanathan B, Heaton A, Brown P. Evaluation of the high temperature performance of HfB 2 UHTC particulate filled C f /C composites. Int J Appl Ceram Technol. 2017 May;14(3):344–53. https://doi.org/10.1111/ijac.12659 10.Akçamlı N, Ağaoğulları D, Balcı Ö, Öveçoğlu ML, Duman İ. Synthesis of HfB powders by mechanically activated borothermal reduction of HfCl4. Ceramics International. 2016 Feb;42(3):3797–807. https://doi.org/10.1016/j.ceramint.2015.11.041 11.Barraud E, Bégin-Colin S, Le Caër G, Villieras F, Barres O. Thermal decomposition of HfCl4 as a function of its hydration state. Journal of Solid State Chemistry. 2006 Jun;179(6):1842–51. https://doi.org/10.1016/j.jssc.2006.02.027 12.Zhang GJ, Guo WM, Ni DW, Kan YM. Ultrahigh temperature ceramics (UHTCs) based on ZrB 2 and HfB 2 systems: Powder synthesis, densification and mechanical properties. J Phys: Conf Ser. 2009 Jun 1;176: 012041. DOI 10.1088/1742-6596/176/1/012041 13.Kim D, Han J, Park C, Lee H, Park JY, Kim W. Chemical Vapor Deposition of Dense Hafnium Carbide from HfCl 4 –C 3 H 6 –H 2 System for the Protection of Carbon Fibers. Adv Eng Mater. 2019 May;21(5):1800730. https://doi.org/10.1002/adem.201800730 14.Wang Y, Li Z, Xiong X, Li X, Chen Z, Sun W. Action mechanism of hydrogen gas on deposition of HfC coating using HfCl4-CH4-H2-Ar system. Applied Surface Science. 2016 Dec; 390: 903–8. https://doi.org/10.1016/j.apsusc.2016.08.169 15.Yang Y, Jayaraman S, Kim DY, Girolami GS, Abelson JR. CVD Growth Kinetics of HfB 2 Thin Films from the Single-Source Precursor Hf(BH 4 ) 4. Chem Mater. 2006 Oct 1;18(21):5088–96. https://doi.org/10.1021/cm0605421 16.Deck CP, Khalifa HE, Sammuli B, Back CA. Modeling Forced Flow Chemical Vapor Infiltration Fabrication of SiC-SiC Composites for Advanced Nuclear Reactors. Science and Technology of Nuclear Installations. 2013; 2013: 1–10. https://doi.org/10.1155/2013/127676 17.Parthasarathy TA, Rapp RA, Opeka M, Kerans RJ. A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Materialia. 2007 Oct;55(17):5999–6010. https://doi.org/10.1016/j.actamat.2007.07.027 18.Deardorff DK, Copeland MI, Adams RP. The Hafnium-carbon Phase Diagram. 1996. 19.Nakayama H, Ozaki K, Nabeta T, Nakajima Y. Composition Dependence of Lattice Parameter, Thermal and Electrical Properties in ZrCx Compounds. Mater Trans. 2017;58(6):852–6. https://doi.org/10.2320/matertrans.M2016283 20.Chen L, Gu Y, Shi L, Yang Z, Ma J, Qian Y. Synthesis and oxidation of nanocrystalline Journal of Alloys and Compounds. 2004 Apr;368(1–2):353–6. HfB2. https://doi.org/10.1016/j.jallcom.2003.08.086 21.Deng J, Cheng L, Hong Z, Su K, Zhang L. Thermodynamics of the production of condensed phases in the chemical vapor deposition process of zirconium diboride with ZrCl4–BCl3–H2 precursors. Thin Solid Films. 2012 Jan;520(6):2331–5. https://doi.org/10.1016/j.tsf.2011.10.004 22.Zhu Y, Cheng L, Ma B, Gao S, Feng W, Liu Y, et al. Calculation and synthesis of ZrC by CVD from ZrCl4–C3H6–H2–Ar system with high H2 percentage. Applied Surface Science. 2015 Mar; 332: 591–8. https://doi.org/10.1016/j.apsusc.2015.01.175 23.Gai W, Zhang Y, Chen G, Kong J, Zhang P, Zhu X, et al. HfB2 coating on C/C composites prepared by chemical vapor deposition: Thermodynamics and experimental investigation. Ceramics International. 2022 Nov;48(21):31354–62. https://doi.org/10.1016/j.ceramint.2022.06.323 24.Shinavski RJ, Diefendorf RJ. CVI Processing of Thin C/HfB2 Composites. In: Wachtman JB, editor. Ceramic Engineering and Science Proceedings [Internet]. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 1993 [cited 2023 Jun 30]. p. 824–31. https://onlinelibrary.wiley.com/doi/10.1002/9780470314234.ch16 25.Verdon C, Szwedek O, Jacques S, Allemand A, Le Petitcorps Y. Hafnium and silicon carbide multilayer coatings for the protection of carbon composites. Surface and Coatings Technology. 2013 Sep;230: 124–9. https://doi.org/10.1016/j.surfcoat.2013.06.022
Conference: SAMPE 2024
Publication Date: 2024/05/20
SKU: TP24-0000000128
Pages: 16
Price: $32.00
Get This Paper