Search

DIGITAL LIBRARY: SAMPE 2024 | LONG BEACH, CA | MAY 20-23

Get This Paper

Exploring the Effects of Microstructure on the Strain Sensing Behavior of Carbon Nanotube and Carbon Nanotube Hybrid Films

Description

Title: Exploring the Effects of Microstructure on the Strain Sensing Behavior of Carbon Nanotube and Carbon Nanotube Hybrid Films

Authors: Joshua DeGraff, Matt Kurlich, Philip Robertson, Anghea Dolisca, Jerry Horne, Richard Liang

DOI: 10.33599/nasampe/s.24.0236

Abstract: New materials have emerged in the realm of sensing, and it has led to the development of systems that can facilitate preventative maintenance through structural health monitoring (SHM). More specifically, strain gauges have become the core instrument for SHM. To enhance SHM systems for widespread adoption, the sensitivity of strain gauges needs to be improved to uncover critical structural information in brittle materials (i.e., fiber-reinforced composites and ceramics). Compared to the commercial status quo, carbon nanotube buckypaper (CNT-BP) films have displayed 8x higher sensitivity; however, strain range has been limited. As a result, CNT-based strain gauges are most suitable for stiff and brittle structures with low failure strain. This research will seek to improve the strain range of CNT films by manufacturing and testing various forms of CNT-BP including films comprised of long nanotubes, silver nanowires, and graphene. Each form of CNT-BP offers a unique microstructure that can influence sensing performance by altering the electromechanical coupling among the nanotubes. The goal of this research is to establish robust structure-property-performance relationships through scanning electron microscopy (SEM), electrical testing, and strain sensing performance to advance the design and manufacturing of CNT-based sensors in SHM.

References: (1)Rasathi, S.; Geetha, K.; Ilavarasi, R.; Stalin, J. ""Experimental Investigation for Gauge Factor of Carbon Nanotube Strain Sensor."" International Journal of Research in Engineering and Science 2022, 10 (4), 40–45. (2)Chen, C.; Chu, F.; Zhang, Y.; Ma, M.; Sun, R.; Jia, P.; Sun, J. ""Fabricating Flexible Strain Sensor with Direct Writing Graphene/Carbon Nanotube Aerogel."" ACS Appl. Electron. Mater. 2023, 5 (3), 1429–1436. https://doi.org/10.1021/acsaelm.2c01338. (3)Min, S.-H.; Lee, G.-Y.; Ahn, S.-H. ""Direct Printing of Highly Sensitive, Stretchable, and Durable Strain Sensor Based on Silver Nanoparticles/Multi-Walled Carbon Nanotubes Composites."" Composites Part B: Engineering 2019, 161, 395–401. https://doi.org/10.1016/j.compositesb.2018.12.107. (4)Roh, E.; Hwang, B.-U.; Kim, D.; Kim, B.-Y.; Lee, N.-E. ""Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human–Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers."" ACS Nano 2015, 9 (6), 6252–6261. https://doi.org/10.1021/acsnano.5b01613. (5)Zhang, X.; Xiang, D.; Wu, Y.; Harkin-Jones, E.; Shen, J.; Ye, Y.; Tan, W.; Wang, J.; Wang, P.; Zhao, C.; Li, Y. ""High-Performance Flexible Strain Sensors Based on Biaxially Stretched Conductive Polymer Composites with Carbon Nanotubes Immobilized on Reduced Graphene Oxide."" Composites Part A: Applied Science and Manufacturing 2021, 151, 106665. https://doi.org/10.1016/j.compositesa.2021.106665. (6)Xiang, D.; Zhang, X.; Harkin-Jones, E.; Zhu, W.; Zhou, Z.; Shen, Y.; Li, Y.; Zhao, C.; Wang, P. ""Synergistic Effects of Hybrid Conductive Nanofillers on the Performance of 3D Printed Highly Elastic Strain Sensors."" Composites Part A: Applied Science and Manufacturing 2020, 129, 105730. https://doi.org/10.1016/j.compositesa.2019.105730. (7)Cortés, A.; Sánchez-Romate, X. F.; Jiménez-Suárez, A.; Campo, M.; Ureña, A.; Prolongo, S. G. ""Mechanical and Strain-Sensing Capabilities of Carbon Nanotube Reinforced Composites by Digital Light Processing 3D Printing Technology."" Polymers 2020, 12 (4). https://doi.org/10.3390/polym12040975. (8)DeGraff, J.; Liang, R.; Cottinet, P.-J. ""Scalable and Passive Carbon Nanotube Thin-Film Sensor for Detecting Micro-Strains and Potential Impact Damage in Fiber-Reinforced Composite Materials."" Nanocomposites. (9)DeGraff, J.; Liang, R.; Le, M. Q.; Capsal, J.-F.; Ganet, F.; Cottinet, P.-J. ""Printable Low-Cost and Flexible Carbon Nanotube Buckypaper Motion Sensors."" Materials & Design 2017, 133, 47–53. https://doi.org/10.1016/j.matdes.2017.07.048. (10)Obitayo, W.; Liu, T. ""A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors."" Journal of Sensors 2012, 2012, 652438. https://doi.org/10.1155/2012/652438. (11)Khodke, M.; Chavan, U.; Joshi, S.; Shinde, S. ""Experimental Studies on Carbon Nanotube Strain Sensors."" Materials Today: Proceedings 2023. https://doi.org/10.1016/j.matpr.2023.03.383. (12)Cao, Y.; Lai, T.; Teng, F.; Liu, C.; Li, A. ""Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowires/Carbon Nanotubes on Hair Band for Human Motion Detection."" Progress in Natural Science: Materials International 2021, 31 (3), 379–386. https://doi.org/10.1016/j.pnsc.2021.05.005. (13)Yang, H.; Yuan, L.; Yao, X.; Zheng, Z.; Fang, D. ""Monotonic Strain Sensing Behavior of Self-Assembled Carbon Nanotubes/Graphene Silicone Rubber Composites under Cyclic Loading."" Composites Science and Technology 2020, 200, 108474. https://doi.org/10.1016/j.compscitech.2020.108474. (14)Banna, A. H.; Kayang, K. W.; Volkov, A. N. ""Effects of the Nanotube Length and Network Morphology on the Deformation Mechanisms and Mechanical Properties of Cross-Linked Carbon Nanotube Films."" Journal of Applied Physics 2021, 129 (10), 105101. https://doi.org/10.1063/5.0033442. (15)Bai, Y.; Lin, D.; Wu, F.; Wang, Z.; Xing, B. ""Adsorption of Triton X-Series Surfactants and Its Role in Stabilizing Multi-Walled Carbon Nanotube Suspensions."" Chemosphere 2010, 79 (4), 362–367. https://doi.org/10.1016/j.chemosphere.2010.02.023. (16)Rojas, J. A.; Ardila-Rodríguez, L. A.; Diniz, M. F.; Gonçalves, M.; Ribeiro, B.; Rezende, M. C. ""Optimization of Triton X-100 Removal and Ultrasound Probe Parameters in the Preparation of Multiwalled Carbon Nanotube Buckypaper."" Materials & Design 2019, 166, 107612. https://doi.org/10.1016/j.matdes.2019.107612. (17)Park, J. G.; Louis, J.; Cheng, Q.; Bao, J.; Smithyman, J.; Liang, R.; Wang, B.; Zhang, C.; Brooks, J. S.; Kramer, L.; Fanchasis, P.; Dorough, D. ""Electromagnetic Interference Shielding Properties of Carbon Nanotube Buckypaper Composites."" Nanotechnology 2009, 20 (41), 415702. https://doi.org/10.1088/0957-4484/20/41/415702. (18)Yang, Z.; Wang, D.-Y.; Pang, Y.; Li, Y.-X.; Wang, Q.; Zhang, T.-Y.; Wang, J.-B.; Liu, X.; Yang, Y.-Y.; Jian, J.-M.; Jian, M.-Q.; Zhang, Y.-Y.; Yang, Y.; Ren, T.-L. ""Simultaneously Detecting Subtle and Intensive Human Motions Based on a Silver Nanoparticles Bridged Graphene Strain Sensor."" ACS Appl. Mater. Interfaces 2018, 10 (4), 3948–3954. https://doi.org/10.1021/acsami.7b16284. (19)Yang, Z.; Pang, Y.; Han, X.; Yang, Y.; Ling, J.; Jian, M.; Zhang, Y.; Yang, Y.; Ren, T.-L. ""Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection."" ACS Nano 2018, 12 (9), 9134–9141. https://doi.org/10.1021/acsnano.8b03391. (20)Chen, S.; Wei, Y.; Wei, S.; Lin, Y.; Liu, L. ""Ultrasensitive Cracking-Assisted Strain Sensors Based on Silver Nanowires/Graphene Hybrid Particles."" ACS Appl. Mater. Interfaces 2016, 8 (38), 25563–25570. https://doi.org/10.1021/acsami.6b09188. (21)Qi, P.-D.; Li, N.; Liu, Y.; Qu, C.-B.; Li, M.; Ma, J.-L.; Huang, G.-W.; Xiao, H.-M. ""Understanding the Cycling Performance Degradation Mechanism of a Graphene-Based Strain Sensor and an Effective Corresponding Improvement Solution."" ACS Appl. Mater. Interfaces 2020, 12 (20), 23272–23283. https://doi.org/10.1021/acsami.0c00176.

Conference: SAMPE 2024

Publication Date: 2024/05/20

SKU: TP24-0000000236

Pages: 18

Price: $36.00

Get This Paper