Search

DIGITAL LIBRARY: SAMPE 2024 | LONG BEACH, CA | MAY 20-23

Get This Paper

Material Characterisation of Biaxial Glass-Fibre Woven Fabrics as a Function of Weave Pattern using Picture Frame Tests and Microscopic Analysis

Description

Title: Material Characterisation of Biaxial Glass-Fibre Woven Fabrics as a Function of Weave Pattern using Picture Frame Tests and Microscopic Analysis

Authors: S.Bhat., S.Backes, T.Gries1, J. Orlik

DOI: 10.33599/nasampe/s.24.0245

Abstract: "Due to their promising density-specific mechanical properties, textile reinforced composites are predestined for high performance material applications and are established materials in the aerospace, automotive, energy and sports sectors. Bi-axial woven fabrics are one possible way to produce such FRP composites. The reinforcing yarns are linked by weaving. By applying a load or deformation, they can be shaped in a double curve surface. Based on their specific production parameters, their draping properties can vary significantly. Draping simulations are used to predict the forming behaviour without relying on costly and time consuming trial and error experiments. However, these simulations require a broad material dataset to make accurate predictions. The aim of this work is to characterise different woven textile reinforcement structures for the drapeability. The approach adapted is to analyse several woven fabrics made of glass rovings of different cross-sections and weaving kind using picture frame tests. The loads during lateral compression of the roving through bending and shearing will be measured against the change of roving cross section. Here, the textile will be glued in different deformation levels in order to cut out cross sections for microscopical analysis. With sufficient knowledge about such an agglomerate of the structural textile parameters, it is possible to forecast the folding initiation in given textile preforms."

References: 1.Lässig R, Eisenhut M, Mathias A, et al. Serienproduktion von hochfesten Faserverbundbauteilen. Munich: Roland Berger GmbH, 2012. 2.Schnabel A. Entwicklung von lokal angepassten textilen Halbzeugen für die Großserienfertigung von faserverstärkten Kunststoffen. Dissertation. Germany: RWTH Aachen University, 2013. 3.Krieger H. Methode zur Auslegung von Gelegen mit lokal angepassten Fertigungsparametern für Hochleistungs-Faserverbundkunststoffe. Dissertation. Germany: RWTH Aachen University, 2015. 4.Cherif, C.; Drapierbarkeitssimulation von Verstärkungstextilien für den Einsatz in Faserverbundkunststoffen mit der Finite-Elemente-Methode. Aachen Shaker, 1998 ; Zugl. Aachen: Techn. Hochsch., Diss., 1998 5.Christ, M., Sköck-Hartmann, B., Krieger, H., Hoffmeister, C., Herrmann, A.S., Gries, T.: Prüfverfahren und Methoden zur Charakterisierung der Drapierbarkeit von technischen Textilien; Chemnitzer Textiltechnik Tagung, 2012 6.Hallander P, Akermo M, Mattei C, Petersson M, Nyman T (2013) An experimental study of mechanisms behind wrinkle development during forming of composite laminates. Compos A: Appl Sci Manuf 50:54–64. 7.Lomov SV. Deformability of textile preforms in the manufacture. In: Lomov SV (ed). Non-crimp fabric composites. Cambridge, UK: Woodhead Publishing, 2011. 8.Cao J, Akkerman R, Boisse P, et al. Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results. Compos Part A Appl 2008; 39: 1037–1053. 9.Khan MA, Mabrouki T, Vidal-Sallé E, et al. Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark. J Mater Process Technol 2010; 210: 378–388.

Conference: SAMPE 2024

Publication Date: 2024/05/20

SKU: TP24-0000000245

Pages: 10

Price: $20.00

Get This Paper