Search

DIGITAL LIBRARY: SAMPE 2024 | LONG BEACH, CA | MAY 20-23

Get This Paper

Utilizing Nature-Inspired Designs in 3D-Printed Materials for Enhanced Resistance to High-Velocity Impacts

Description

Title: Utilizing Nature-Inspired Designs in 3D-Printed Materials for Enhanced Resistance to High-Velocity Impacts

Authors: Adam B. Sacherich, Seyed Hamid Reza Sanei, Charles E. Bakis

DOI: 10.33599/nasampe/s.24.0261

Abstract: This research explores nature-inspired designs for materials with high impact resistance, utilizing 3D printing techniques. The study focuses on a layered composite design, combining a nacre-like outer layer with a core resembling tubulane. The solid fill in the outer layers, like dense aragonite in natural nacre, and the tubulane-like core significantly enhance energy dissipation. This customizable design, made possible by 3D printing, is tested for ballistic impact resistance. The effectiveness of the composite is assessed using a 40-grain lead-tipped .22 LR bullet at an initial velocity of 330.7 m/s. A specialized chronograph setup measures the initial and post-penetration bullet velocities to quantify energy absorption. The study offers valuable applications in aviation, structural design, and personal safety gear, pushing the boundaries of material science and additive manufacturing for public safety.

References: [1]I. G. Crouch, “Introduction to armour materials,” in The Science of Armour Materials, Elsevier, 2017, pp. 1–54. doi: 10.1016/b978-0-08-100704-4.00001-3. [2]L. K. Grunenfelder et al., “Bio-inspired impact-resistant composites,” in Acta Biomaterialia, Elsevier Ltd, 2014, pp. 3997–4008. doi: 10.1016/j.actbio.2014.03.022. [3]S. H. R. Sanei and D. Popescu, “3D-Printed Carbon Fiber Reinforced Polymer Composites: A Systematic Review,” Journal of Composites Science, vol. 4, no. 3, p. 98, 2020, doi: 10.3390/jcs4030098. [4]S. H. R. Sanei, A. Arndt, and R. Doles, “Open hole tensile testing of 3D printed continuous carbon fiber reinforced composites,” J Compos Mater, vol. 54, no. 20, pp. 2687–2695, 2020, doi: 10.1177/0021998320902510. [5]D. Hetrick, S. H. R. Sanei, C. E. Bakis, and O. Ashour, “Evaluating the Effect of Variable Fiber Content on Mechanical Properties of Additively Manufactured Continuous Carbon Fiber Composites,” Journal of Reinforced Plastics and Composites, vol. 40, no. 9, pp.365-377, 2021, doi:10.1177/0731684420963217 [6]F. Barthelat, H. Tang, P. D. Zavattieri, C. M. Li, and H. D. Espinosa, “On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure,” J Mech Phys Solids, vol. 55, no. 2, pp. 306–337, Feb. 2007, doi: 10.1016/j.jmps.2006.07.007. [7]M. Y. Kayacan and A. Üzün, “Ballistic performance of novel design of bulletproof plates inspired by biomimetic approaches,” Polym Adv Technol, vol. 34, no. 1, pp. 299–316, Jan. 2023, doi: 10.1002/pat.5888. [8]A. Ghazlan, T. Ngo, T. Van Le, T. Nguyen, and A. Remennikov, “Blast performance of a bio-mimetic panel based on the structure of nacre – A numerical study,” Compos Struct, vol. 234, Feb. 2020, doi: 10.1016/j.compstruct.2019.111691. [9]P. Tran, T. D. Ngo, A. Ghazlan, and D. Hui, “Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings,” Compos B Eng, vol. 108, pp. 210–223, Jan. 2017, doi: 10.1016/j.compositesb.2016.09.083. [10]K. Ko, S. Jin, S. E. Lee, and J. W. Hong, “Impact resistance of nacre-like composites diversely patterned by 3D printing,” Compos Struct, vol. 238, Apr. 2020, doi: 10.1016/j.compstruct.2020.111951. [11]D. R. Hetrick, S. H. R. Sanei, O. Ashour, and C. E. Bakis, “Charpy impact energy absorption of 3D printed continuous Kevlar reinforced composites,” J Compos Mater, vol. 55, no. 12, pp. 1705–1713, May 2021, doi: 10.1177/0021998320985596. [12]R. H. Baugbman and D. S. Galvgo, “Tubulanes: carbon phases based on cross-linked fullerene tubules,” 1993. [13]S. M. Sajadi et al., “3D Printed Tubulanes as Lightweight Hypervelocity Impact Resistant Structures,” Small, vol. 15, no. 52, Dec. 2019, doi: 10.1002/smll.201904747. [14]H. Yazdani Sarvestani, A. H. Akbarzadeh, A. Mirbolghasemi, and K. Hermenean, “3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability,” Mater Des, vol. 160, pp. 179–193, Dec. 2018, doi: 10.1016/j.matdes.2018.08.061. [15]“Carbon Fiber Composite 3D Printer: Markforged Mark Two.” Accessed: Nov. 29, 2022. [Online]. Available: https://markforged.com/3d-printers/mark-two [16]G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam, 1995. [17]P. Virtanen et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nat Methods, vol. 17, pp. 261–272, 2020, doi: 10.1038/s41592-019-0686-2. [18]“Standard Test Method for Ballistic-resistant Products and Shoot Packs 1”, doi: 10.1520/E3112_E3112M-20. [19]C. Silva, A. I. Pais, G. Caldas, B. P. P. A. Gouveia, J. L. Alves, and J. Belinha, “Study on 3D printing of gyroid-based structures for superior structural behaviour,” Progress in Additive Manufacturing, vol. 6, no. 4, pp. 689–703, Dec. 2021, doi: 10.1007/s40964-021-00191-5. [20]“Material Datasheet Composites,” Watertown, MA, Jan. 2022. Accessed: May 17, 2023. [Online]. Available: https://www-objects.markforged.com/craft/materials/CompositesV5.2.pdf [21]“Standard Specification for Indoor Ballistic Test Ranges for Small Arms and Fragmentation Testing of Ballistic-resistant Items 1”, doi: 10.1520/E3062_E3062M-20. [22]Q. Wei, B. Gu, and B. Sun, “Ballistic penetration damages and energy absorptions of stacked cross-plied composite fabrics and laminated panels,” International Journal of Damage Mechanics, vol. 29, no. 9. SAGE Publications Ltd, pp. 1465–1484, Sep. 01, 2020. doi: 10.1177/1056789520927074.

Conference: SAMPE 2024

Publication Date: 2024/05/20

SKU: TP24-0000000261

Pages: 15

Price: $30.00

Get This Paper