Title: Effect of Graphene on the Flammability Behavior of Polyimide-graphene Composites
Authors: Caroline J. Akinyi, and Jude O. Iroh
DOI: 10.33599/nasampe/s.19.1617
Abstract: The presence of graphene in the composites resulted in a remarkable decrease in the heat of combustion of the polymer by up to 81% at 50 wt.% graphene. An increase from 0- 50 wt.% graphene led to a 77% decrease in HRC indicating that the presence of graphene contributed to the increase in anti-flammability behavior of polyimide. The decrease in HRC slowed down at 30 wt.% graphene, showing only a 2.7% decrease between 30 wt.% and 50 wt.%. The rate of degradation was also shown to significantly decrease by up to 85% from 0-50 wt.% graphene
References: [1] Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., & Lee, J. H. "Recent advances in graphene based polymer composites." Progress in Polymer Science (2010). https://doi.org/10.1016/j.progpolymsci.2010.07.005 [2] Geim, A. K., & Macdonald, A. H. Graphene: "Exploring carbon flatland." Physics Today, 60, 35 (2007). https://doi.org/10.1063/1.2774096 [3] Si, Y., & Samulski, E. T. "Synthesis of Water Soluble Graphene." 23, 42 (2019). https://doi.org/10.1021/nl080604h [4] Du, X., Skachko, I., Barker, A., & Andrei, E. Y. "Approaching ballistic transport in suspended graphene." Nature Nanotechnology, 3(8), 491–495 (2008). https://doi.org/10.1038/nnano.2008.199 [5] Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (n.d.). "Superior Thermal Conductivity of Single-Layer Graphene." https://doi.org/10.1021/nl0731872 [6] Lee, Y. R., Raghu, A. V., Jeong, H. M., & Kim, B. K. "Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites Prepared by an in situ Method." Macromolecular Chemistry and Physics, 210(15), 1247–1254 (2009). https://doi.org/10.1002/macp.200900157 [7] Eda, G., & Chhowalla, M. (n.d.). "Graphene-based Composite Thin Films for Electronics." https://doi.org/10.1021/nl8035367 [8] Liang, J., Xu, Y., Huang, Y., Zhang, L., Wang, Y., Ma, Y., … Chen, Y. (n.d.). "Infrared-Triggered Actuators from Graphene-Based Nanocomposites." https://doi.org/10.1021/jp901284d [9] Kim, H., & Macosko, C. W. "Processing-property relationships of polycarbonate/graphene composites." Polymer, 50(15), 3797–3809 (2009). https://doi.org/10.1016/J.POLYMER.2009.05.038 [10] Quan, H., Zhang, B., Zhao, Q., Yuen, R. K. K., & Li, R. K. Y. "Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites." Composites Part A: Applied Science and Manufacturing, 40(9), 1506–1513 (2009). https://doi.org/10.1016/J.COMPOSITESA.2009.06.012 [11] Xu, Y., Wang, Y., Liang, J., Huang, Y., Ma, Y., Wan, X., & Chen, Y. "A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency." Nano Research, 2(4), 343–348 (2009). https://doi.org/10.1007/s12274-009-9032-9 [12] Lee, Y. R., Raghu, A. V., Jeong, H. M., & Kim, B. K. "Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites Prepared by an in situ Method." Macromolecular Chemistry and Physics, 210(15), 1247–1254 (2009). https://doi.org/10.1002/macp.200900157 [13] Ramanathan, T., Abdala, A. A., Stankovich, S., Dikin, D. A., Herrera-Alonso, M., Piner, R. D., … Brinson, L. C. "Functionalized graphene sheets for polymer nanocomposites." Nature Nanotechnology, 3(6), 327–331 (2008a). https://doi.org/10.1038/nnano.2008.96 [14] Yoonessi, M., Shi, Y., Scheiman, D. A., Lebron-Colon, M., Tigelaar, D. M., Weiss, R. A., & Meador, M. A. "Graphene polyimide nanocomposites; Thermal, mechanical, and high-temperature shape memory effects." ACS Nano, 6(9), 7644–7655 (2012). https://doi.org/10.1021/nn302871y [15] Adamczak, A. D., Spriggs, A. A., Fitch, D. M., Awad, W., Wilkie, C. A., & Grunlan, J. C. "Thermal Degradation of High-Temperature Fluorinated Polyimide and its Carbon Fiber Composite." J Appl Polym Sci, 115, 2254–2261 (2009). https://doi.org/10.1002/app.31321 [16] Meador, M. A. "Recent advances in the development of processable high-temperature polymers." Annu. Rev. Mater. Sci (Vol. 28) (1998). Retrieved from www.annualreviews.org [17] Li, Y., & Morgan, R. J. "Thermal cure of phenylethynyl-terminated AFR-PEPA-4 imide oligomer and a model compound." Journal of Applied Polymer Science, 101(6), 4446–4453 (2006). https://doi.org/10.1002/app.24047 [18] Ju, J., & Morgan, R. J. "Characterization of Microcrack Development in BMI-Carbon Fiber Composite under Stress and Thermal Cycling." Journal of Composite Materials, 38(22) (2004). https://doi.org/10.1177/0021998304044773 [19] Li, Y., Obando, N., Tschen, F., & Morgan, R. J. "Thermal analysis of phenylethynyl end-capped fluorinated imide oligomer afr-pepa-4." Journal of Thermal Analysis and Calorimetry, 85(1), 125–129 (2006). https://doi.org/10.1007/s10973-005-7355-7 [20] Cella, J. A." Degradation and stability of polyimides." Polymer Degradation and Stability, 36(2), 99–110 (1992). https://doi.org/10.1016/0141-3910(92)90145-U [21] Chen Shiyong Yang Zhiqiang Tao Aijun Lin Fan, J. H. (n.d.). "Processing and Properties of Carbon Fiber-reinforced PMR Type Polyimide Composites." https://doi.org/10.1177/0954008306063395 [22] Lincoln, J. E., Morgan, R. J., & Shin, E. E. "Effect of thermal history on the deformation and failure of polyimides." Journal of Polymer Science Part B: Polymer Physics, 39(23), 2947–2959 (2001). https://doi.org/10.1002/polb.10043 [23] Kung, H.-K. (n.d.). "Effects of Surface Roughness on High-temperature Oxidation of Carbon-fiber-reinforced Polyimide Composites." https://doi.org/10.1177/0021998305051801 [24] Cho, D., & Drzal, L. T. "Characterization, properties, and processing of LaRC PETI-5 as a high-temperature sizing material. II. Thermal characterization." Journal of Applied Polymer Science, 75(10), 1278–1287 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000307)75:10<1278::AID-APP9>3.0.CO;2-M [25] Li, Y., Murphy, L. A., Lincoln, J. E., & Morgan, R. J."Phenylethynyl End-Capped Fluorinated Imide Oligomer AFR-PEPA-N: Morphology and Processibility Characteristics." Macromolecular Materials and Engineering, 292(1), 78–84 (2007). https://doi.org/10.1002/mame.200600306 [26] Lewin, M., Atlas, S. M., & Pearce, E. M. . Flame - Retardant Polymeric Materials : Volume 3. Springer New York (1982) [27] Morgan, A. B., & Wilkie, C. A. Non-Halogenated Flame Retardant Handbook. Non-Halogenated Flame Retardant Handbook, 1–419 (2014). https://doi.org/10.1002/9781118939239 [28] Sang, B., Li, Z. wei, Li, X. hong, Yu, L. gui, & Zhang, Z. jun. "Graphene-based flame retardants: a review." Journal of Materials Science, 51(18), 8271–8295 (2016). https://doi.org/10.1007/s10853-016-0124-0 [29] Ramanathan, T., Abdala, A. A., Stankovich, S., Dikin, D. A., Herrera-Alonso, M., Piner, R. D., … Brinson, L. C. "Functionalized graphene sheets for polymer nanocomposites." Nature Nanotechnology, 3(6), 327–331 (2008b). https://doi.org/10.1038/nnano.2008.96 [30] Eda, G., & Chhowalla, M. "Graphene-based Composite Thin Films for Electronics." Nano Letters, 9(2), 814–818 (2009). https://doi.org/10.1021/nl8035367 [31] Longun, J., & Iroh, J. O. "Polyimide/substituted polyaniline-copolymer-nanoclay composite thin films with high damping abilities." Journal of Applied Polymer Science (2013). https://doi.org/10.1002/app.36794 [32] Huang, G., Gao, J., Wang, X., Liang, H., & Ge, C. "How can graphene reduce the flammability of polymer nanocomposites."Materials Letters, 66(1), 187–189 (2012). https://doi.org/10.1016/J.MATLET.2011.08.063 [33] Cullis, C. F. "The role of pyrolysis in polymer combustion and flame retardance." Journal of Analytical and Applied Pyrolysis (1987). https://doi.org/10.1016/0165-2370(87)85047-7 [34] Longun, J., & Iroh, J. O. "Nano-graphene/polyimide composites with extremely high rubbery plateau modulus." Carbon, 50(5), 1823–1832 (2012). https://doi.org/10.1016/J.CARBON.2011.12.032 [35] Janssens, M. (2005). Polymer Flammability. Retrieved from https://www.fire.tc.faa.gov/pdf/05-14.pdf [36] Horowitz H. Hugh, & Metzger Gershon. "A New Analysis of Thermogravimetric Traces." Analytical Chemistry, 35(10), 1464–1468 (1963). Retrieved from https://pubs.acs.org/doi/pdf/10.1021/ac60203a013
Conference: SAMPE 2019 - Charlotte, NC
Publication Date: 2019/05/20
SKU: TP19--1617
Pages: 11
Price: FREE
Get This Paper